• Title/Summary/Keyword: annular flume

Search Result 21, Processing Time 0.02 seconds

Estimation of Entrainment Rate of Fluid Mud using Annular Flume (환형수조를 이용한 머드유동층의 연행부상률 산정)

  • Kim, Dong-Ho;Kim, Won-Kyu;Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.257-264
    • /
    • 2016
  • In this study, experiments for measurements of entrainment rate of fluid mud were carried out using annular flume domestically for the first time. Six entrainment tests using kaolinite sediments were conducted with different initial concentrations of fluid mud. It is shown that sediment settling counteracts the otherwise buoyancy dependent entrainment of fluid mud, and that the settling effect leads to a measurably decreased entrainment rate at higher Richardson numbers in comparison with entrainment of salt water, due to additional dissipation of turbulent kinetic energy in the interfacial layer. Through the comparison with previous other studies, the overall performance of the annular flume, the experimental procedure and the test results in simulating the entrainment of fluid mud are shown to be good enough to verify.

An Experimental Study for Estimation of Erosion Rate of Fine Cohesive Sediments (미세-점착성 퇴적물의 침식률 산정을 위한 실험적 연구)

  • Hwang Kyu-Nam;So Sang-Don;Kim Tae-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.119-128
    • /
    • 2005
  • An annular flume has been constructed in order to estimate the erosion rate of fine cohesive sediments. Under an uniform bed condition, some erosion tests for Kaolinite sediments have been conducted to examine the performance of the flume and to check the validity of experimental method and results. In this study, the critical shear stress for erosion and the erosion rate coefficient are estimated and compared with the existing measurements. It is concluded that the performance of the annular flume is good enough to conduct erosion tests and the experimental method and results are valid.

An automatic rotating annular flume for cohesive sediment erosion experiments: Calibration and preliminary results

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.319-319
    • /
    • 2023
  • Flows of water in the environment (e.g. in a river or estuary) generally occur in complex conditions. This complexity can hinder a general understanding of flows and their related sedimentary processes, such as erosion and deposition. To gain insight in simplified, controlled conditions, hydraulic flumes are a popular type of laboratory research equipment. Linear flumes use pumps to recirculation water. This isn't appropriate for the investigation of cohesive sediments as pumps can break fragile cohesive sediment flocs. To overcome this limitation, the rotating annular flume (RAF) was developed. While not having pumps, a side-effect is that unwanted secondary circulations can occur. To counteract this, the top and bottom lid rotate in opposite directions. Furthermore, a larger flume is considered better as it has less curvature and secondary circulation. While only a few RAFs exist, they are important for theoretical research which often underlies numerical models. Many of the first-generation of RAFs have come into disrepair. As new measurement techniques and models become available, there is still a need to research cohesive sediment erosion and deposition in facilities such as a RAF. New RAFs also can have the advantage of being automatic instead of manually operated, thus improving data quality. To further advance our understanding of cohesive sediment erosion and deposition processes, a large, automatic RAF (1.72 m radius, 0.495 m channel depth, 0.275 m channel width) has been constructed at the Hydraulic Laboratory at Chungnam National University (CNU), Korea. The RAF has the ability to simulate both unidirectional (river) and bidirectional (tide) flows with supporting instrumentation for measuring turbulence, bed shear stress, suspended sediment concentraiton, floc size, bed level, and bed density. Here we present the current status and future prospect of the CNU RAF. In the future, calibration of the rotation rate with bed shear stress and experiments with unidirectional and bidirectional flow using cohesive kaolinite are expected. Preliminary results indicate that the CNU RAF is a valuable tool for fundamental cohesive sediment transport research.

  • PDF

An Experimental Study on Flow Characteristics in the Open Annular Flume (환형수조에서 흐름특성에 관한 실험적 연구)

  • Choi, In Ho;Kim, Jong Woo
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2019
  • This study investigated the flow characteristics in an annular flume with a free water surface using the Acoustic Doppler Velocimeter(ADV) in the laboratory. The flow was driven by the rotation of the inner cylinder in a way designed not to interfere with flocculation of cohesive sediments. The effect of the inner cylinder for the longitudinal velocities showed highest near the moving boundary and decreased towards the outer wall. At the lower longitudinal velocity, there was a peak in turbulent kinetic energy near the bed, whereas it moved upward to with increasing of the velocity. The longitudinal velocities estimated using the power law were in good agreement with the measured values than the values predicted by the log-law with roughness lengths. The average friction velocities evaluated by Reynolds shear stress were smaller than the values calculated using the log-law and power law when increasing the longitudinal velocity.

Study of Settling Properties of Cohesive Sediments (점착성 유사의 침강특성에 관한 연구)

  • Choi, In Ho;Kim, Jong Woo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.303-310
    • /
    • 2017
  • This paper is to understand the settling properties of cohesive sediments under effects of ions in turbulent flow. The experiments were conducted using a miniature annular flume(mini flume) with a free water surface. Silica was used as sediment of experiment. The suspended concentrations were measured by using a CCD-Camera. Settling of silica($SiO_2$) was allowed to occur under various shear stresses in a concentration of 7g/L. At condition of pH 4.2 and high NaCl concentration, the floc size D of silica was larger than D at condition of pH6.8 with the bed shear stress increasing. The settling velocity $W_s$ of silica was higher at condition of 10g NaCl/L than $W_s$ at condition of pH4.2. Comparison of measured concentration-time curves and concentration-time curves calculated by this study showed similar tendency in flow under effects of ions.

An Experimental Study on Parameter Estimation of Settling and Erosional Properties for Cohesive Sediments in Shihwa Lake (시화호 점착성 퇴적물의 침강.침식 특성 매개변수 산정에 대한 실험적 연구)

  • Ryu Hong-Ryul;Hwang Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.179-188
    • /
    • 2006
  • The purpose of this study is to quantitatively estimate the settling and erosional properties for cohesive sediments in Shihwa lake. Settling tests are conducted by multi-depth method using a specially designed 1.8 m tall settling column, and erosion tests are conducted with annular flume under the uniform bed condition. As result of settling tests, it is confirmed that the settling velocity of the cohesive sediments has the range of $0.002 for suspended sediments concentration of 0.1$0.19{\sim}0.55N/m^{2}$ for bed shear stress of $1.14{\sim}1.32g/cm^{3}$, and the erosion rate coefficient decreases with logarithmic function in a range of $18.4{\sim}3.9mg/cm^{2}{\cdot}hr$ with increase of bed shear stress.

Physical Characteristics of Floc Density of Suspended Fine Particles in accordance with the Cohesiveness (점착성에 따른 부유 미립자의 플럭밀도에 대한 물리적 특성)

  • Choi, In Ho;Kim, Jong Woo
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.227-234
    • /
    • 2018
  • This paper was examined the physical characteristics of floc density of suspended fine particles with varying cohesiveness. The analysis of floc density was performed in a small annular flume with a free water surface under different bed shear stresses and ion addition. Fine-grained silica was used as model material, as it is the main mineral components of clay that affects sedimentation. It was concluded that floc density depended on increasing the bed shear stress, the salinity and pH value. Floc density decreased with increasing the salinity in still water and floc size, whereas the opposite was true when increasing the bed shear stress. Also, it increased at pH6.8 more than at pH4.2 when increasing the bed shear stress in the range from 0.0086 to $0.0132N/m^2$.

SEDIMENT ENTRAINMENT DUE TO SHEAR FLOW (전단류에 의한 퇴적물 부상)

  • Kang, See Whan
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 1983
  • A series of experiments was performed to increase and make our puantitive understanding of the entrainuent and settling processes of fine-grained sediments, which are of critical importance to construct a predictive model of sediment experiments were performed in an annular flume. A rotating top produced a turbulent flow which in turn exerted and are shown to be dependent on the sediment concentration and the presence of clay minerals. The parameters on which entrainment strongly depends were identified to be the shear stress, water content (time ofter deposition), and the type of sediment (grain size and mineralogy).

  • PDF