• Title/Summary/Keyword: annual loss

Search Result 316, Processing Time 0.026 seconds

A Study to Evaluate and Remedy Universal Soil Loss Equation Application for Watersheds and Development Projects (범용토양유실공식의 유역단위 및 개발사업에 대한 적용방안 검토 및 보완에 관한 연구)

  • Woo, Won Hee;Chae, Min Suh;Park, Jong-Yoon;Lee, Hanyong;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.3
    • /
    • pp.29-42
    • /
    • 2023
  • Universal Soil Loss Equation (USLE) is suggested and employed in the policy to conserve soil resources and to manage the impact of development, since soil loss is very essential to nonpoint source pollution management. The equation requires only five factors to estimate average annual potential soil loss, USLE is simplicity provides benefits in use of the equation. However, it is also limitation of the model, since the estimated results are very sensitive to the five factors. There is a need to examine the application procedures. Three approaches to estimate potential soil loss were examined, In the first approach, all factors were prepared with raster data, soil loss were computed for each cell, and sum of all cell values was determined as soil loss for the watersheds. In the second approach, the mean values for each factor were defined as representing USLE factors, and then the five factors were multiplied to determine soil loss for the watersheds. The third approach was same as the second approach, except that the Vegetative and Mechanical measure was used instead of the Cover and management factor and Support practice factor. The approaches were applied in 38 watersheds, they displayed significant difference, moreover no trends were detected for the soil loss at watersheds with the approaches. Therefore, it was concluded that there is a need to be developed and provided a typical guideline or public systems so that soil loss estimations have consistency with the users.

Integration of GIS-based RUSLE model and SPOT 5 Image to analyze the main source region of soil erosion

  • LEE Geun-Sang;PARK Jin-Hyeog;HWANG Eui-Ho;CHAE Hyo-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.357-360
    • /
    • 2005
  • Soil loss is widely recognized as a threat to farm livelihoods and ecosystem integrity worldwide. Soil loss prediction models can help address long-range land management planning under natural and agricultural conditions. Even though it is hard to find a model that considers all forms of erosion, some models were developed specifically to aid conservation planners in identifying areas where introducing soil conservation measures will have the most impact on reducing soil loss. Revised Universal Soil Loss Equation (RUSLE) computes the average annual erosion expected on hillslopes by multiplying several factors together: rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), cover management (C), and support practice (P). The value of these factors is determined from field and laboratory experiments. This study calculated soil erosion using GIS-based RUSLE model in Imha basin and examined soil erosion source area using SPOT 5 high-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area applying field survey method in common areas (dry field & orchard area) that are difficult to confirm soil erosion source area using satellite image.

  • PDF

Estimating Direct Costs of Enterprises by Personal Information Security Breaches (개인정보 유.노출 사고로 인한 기업의 손실비용 추정)

  • Yoo, Jin-Ho;Jie, Sang-Ho;Lim, Jong-In
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.4
    • /
    • pp.63-75
    • /
    • 2009
  • Recently personal information security breaches by unauthorised access, mistakenly disclosure or stolen become more frequent and the scale of the economic loss of such incidents is growing. Assessing economic loss of personal information security breaches is needed for decision making of information security investment This paper presents a framework to analyze economic impact of personal information security breaches and develops formula for each element to empirically calculate the economic loss. We also compared annual economic loss of Korea with that of Japan to develop some implications.

RADIOGRAPHIC EVALUATION OF THE PROXIMAL BONE LEVEL BETWEEN TWO IMPLANTS : A 3-YEAR COMPARATIVE STUDY BETWEEN BR$BR{\AA}$NEMARK AND ITI IMPLANTS IN THE MANDIBULAR POSTERIOR REGION (하악 구치부에 식립된 Br${\aa}$nemark 임프란트와 ITI 임프란트에서 임프란트간 치조정간골의 높이변화에 대한 방사선학적 비교)

  • Yi, Sang-Hwa;Cha, In-Ho;Shim, June-Sung;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.458-470
    • /
    • 2004
  • Statement of problem: Br${\aa}$nemark or ITI are two currently most widely used implant systems but with contrasting design, surgical and restoration methods. Purpose: The purpose of this study was to compare changes and its statistical significance in bone height and shape which may rise due to the differences between two implant systems. Also to analyse the effect of inter-implant distance on annual bone height changes. Material & Method: Those patients who were treated with two or more of either Br${\aa}$nemark or ITI implants at posterior mandibular area at Yonsei University Dental Hospital, Implant Clinic were selected. At annual examination appointments, standardised radiographs using parallel technique were taken. Marginal bone and inter-implant crestal bone changes were measured and following results were obtained. Results: 1) When ITI and Br${\aa}$nemark system were compared, both annual marginal and inter-implant crestal bone height changes in ITI system in the first two years were smaller than Br${\aa}$nemark and they were statistically significant. On the third year, however, there was no statistical difference between two implant systems on their annual bone level changes (p>0.05). 2) The Marginal and inter-implant crestal bone changes were compared when inter-implant distance was less than 4mm. Statistically significant bone level changes were noted on the first year only for ITI implants but in the first and second year for Br${\aa}$nemark implants (p>0.05). 3) When comparing angulation changes between marginal bone and implant fixture, ITI system had smaller angulation changes but the annual changes were not statistically significant (p>0.05). Conclusion: Within the limitation of this study, it could be concluded that Br${\aa}$nemark implant systems had more changes in marginal and inter-implant crestal bone level in the first and second year after loading with statistical significance. Further studies are recommended to see the effects of these bone loss during the first and second year after loading on the long term prognosis of Br${\aa}$nemark Implants.

Soil Erosion Risk Assessment of the Geumho River Watershed using GIS and RUSLE Methods (GIS 및 RUSLE 기법을 활용한 금호강 유역의 토양침식위험도 평가)

  • Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.4
    • /
    • pp.24-36
    • /
    • 2003
  • This study integrates the revised universal soil loss equation(RUSLE) with a grid-based GIS method to assess the potential risk of soil erosion at the watershed scale. Data used in this study to generate the RUSLE factors include several thematic maps such as land use, topographic and soil maps, together with tabular precipitation data. Based on the RUSLE estimation for all the grids(10m cells) in the corresponding watershed, a cumulative histogram for the annual soil loss can be constructed. As the results, it shows that the 83.5% value of the annual soil loss for the watershed is less than 1ton/ha. However, the above 30% of agricultural land is defined as a medium or very high-risk area(more than 10ton/ha/yr). So it is necessary to establish soil conservation practices to reduce soil erosion based on the field observations.

  • PDF

Evaluation of Building Envelope Performance of a Dry Exterior Insulation System Using Truss Insulation Frame (트러스 단열 프레임을 이용한 건식 외단열 시스템의 외피 종합 성능 평가)

  • Song, Jin-Hee;Lee, Dong-Yun;Shin, Dong-Il;Jun, Hyun-Do;Park, Cheol-Yong;Kim, Sang-Kyun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.153-164
    • /
    • 2019
  • The presence of thermal bridges in a building envelope cause additional heat loss which increases the heating energy. Given that a higher building insulation performance is required in these cases, the heat loss via thermal bridges is a high proportion of the total heat energy consumption of a building. For the dry exterior insulation system that uses mullions and transoms to fix insulation and exterior materials such as stone and metal sheet, the occurrence of thermal bridges at mullions and transoms is one of the main reasons for heat loss. In this study, a dry exterior insulation system using the truss insulation frame (TIF) was proposed as an alternative to metal mullions. To evaluate the building envelope performance, structural, air-leakage, water-leakage, fire-resistance, thermal, and condensation risk tests were conducted. In addition, the annual energy consumption associated with heating and cooling was calculated, including the linear thermal transmittance of the thermal bridges. As a result, the dry exterior insulation system using TIF achieved the allowable value for all tests. It was also determined that the annual heating load of a building was reduced by 36.7 % when the TIF dry exterior insulation system was used, relative to the dry exterior insulation system using steel pipes without additional insulations.

Correlation analysis of key operating indicators of waterworks with the Infrastructure Leakage Index (ILI) (수도사업자의 주요 운영지표와 ILI(Infrastructure Leakage Index)와의 상관관계 분석)

  • Jeon, Seunghui;Hyun, Inhwan;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.3
    • /
    • pp.237-246
    • /
    • 2021
  • The ILI, developed by the IWA (International Water Association), has been used in many countries as an indicator of water leakage. In Korea, the revenue water has been used as a performance indicator for waterworks although there is an opinion to replace it with the ILI. Hence, it has been necessary to investigate whether the ILI can replace the revenue water in Korea. The four main operating indicators (i.e., water service population, profit-loss ratio, fiscal self-reliance, and aged pipe rate) of 162 Korean waterworks were compared with the ILI with the linear regression method. Local water authorities with more than 1 million water service population, with more than 60% profit-loss ratio, more than 40% and less than 60% fiscal self-reliance, and more than 20% aged pipe rate showed meaningful correlation between the four parameters and the ILI. In the remaining cases, their correlations were little or weak. This means that using the ILI may not be an efficient method to represent the performance of the water supply system in Korea because of the lack of UARL (Unavoidable Annual Real Losses) data accuracy. To use the ILI in Korea, it will be required to carry out an additional research to accumulate reliable CARL (Current Annual Real Losses) and UARL data in the future.

Surface Energy Balance at Sejong Station, King George Island, Antarctica (남극 세종기지의 에너지 평형)

  • Kim, Jhoon;Cho, Hi Ku;Jung, Yeon Jin;Lee, Yun Gon;Lee, Bang Yong
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.111-124
    • /
    • 2006
  • This study examines seasonal variability of the surface energy balance at the King Sejong Station, Antarctica, using measurements and estimates of the components related to the balance for the period of 1996 to 2004. Annual average of downward shortwave radiation at the surface is 81 $Wm^{-2}$ which is 37% of the extraterrestrial value, with the monthly maximum of 188 $Wm^{-2}$ in December and the minimum of 8 $Wm^{-2}$ in June. These values are relatively smaller than those at other stations in Antarctica, which can be attributed to higher cloudy weather conditions in Antarctic front zone. Surface albedo varies between ~0.3 in the austral summer season and ~0.6 in the winter season. As a result, the net shortwave radiation ranges from 117 $Wm^{-2}$ down to 3 $Wm^{-2}$ with annual averages of 43 $Wm^{-2}$. Annual average of the downward longwave radiation shows 278 $Wm^{-2}$, ranging from 263 $Wm^{-2}$ in August to 298 $Wm^{-2}$ in January. The downward longwave radiation is verified to be dependent strongly on the air temperature and specific humidity, accounting for 74% and 79% of the total variance in the longwave radiation, respectively. The net longwave radiation varies between 25 $Wm^{-2}$ and 40 $Wm^{-2}$ with the annual averages of 30 $Wm^{-2}$. Accordingly, the annual average energy balance is dominated by radiative warming of a positive net all-wave radiation from September to next March and radiative cooling of a negative net all-wave radiation from April to August. The net all-wave radiative energy gain and loss at the surface is mostly balanced by turbulent flux of sensible and latent heat. The soil heat flux is of negligible importance in the surface energy balance.

Soil Erosion Risk Assessment in the Upper Han River Basis Using Spatial Soil Erosion Map (분포형 토양침식지도를 이용한 한강상류지역 토양유실 위험성 평가)

  • Park, Chan-Won;Sonn, Yeon-Kyu;Zhang, Yong-Seon;Hong, S.-Young;Hyun, Byung-Keun;Song, Kwan-Cheol;Ha, Sang-Keun;Moon, Young-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.828-836
    • /
    • 2010
  • This study was conducted to evaluate soil erosion risk with a standard unit watershed in the upper Han river basin using the spatial soil erosion map according to the change of landuse. The study area is 14,577 $km^2$, which consists of 10 subbasins, 107 standard unit watersheds. Total annual soil loss and soil loss per area estimated were $895{\times}10^4\;Mg\;yr^{-1}$ and 6.1 Mg $ha^{-1}\;yr^{-1}$, respectively. A result of analysis with a subbasin as a unit showed that annual soil losses and soil loss per area in Namhan river basins was more than in Bukhan river ones. Predicted annual soil loss according to the landuse ranked as Forest & Grassland > Upland ${\gg}$ Urban & Fallow area > Paddy field > Orchard. Upland area covered 6.2% of the study area, but the contribution of total annul soil loss was 40.6% and that of Forest & Grassland was 44.2%. As a evaluation of soil erosion risk using the spatial soil erosion map, we could precisely conformed the potential hazardous region of soil erosion in each unit watersheds. The ratio of regions, graded as higher "Moderate" for annual soil loss, were respectively 8.7%, 7.9% and 7.8% in 1001, 1002 and 1003 subbasins in Namhan river basin. Most landuse of these area was upland, and these area is necessary to establish soil conservation practices to reduce soil erosion based on the field observation.

Annual Runoff Loading of Nitrogen and Phosphorus from a Paddy Field

  • Han, Kang-Wan;Cho, Jae-Young;Choi, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.29-33
    • /
    • 1999
  • The present study examined annual runoff loading of nitrogen and phosphorus in the paddy field from 1 May, 1997 to 30 April, 1998. In the investigated area, the amount of rainfall was 1,095.6 mm and 414.6 mm during cropping season and non-cropping season. The annual rainfall was 1,510.2 mm. The total amount of runoff water was 1,043.2 mm and 281.0mm during cropping season and non-cropping season, and the added total amount of runoff water during two seasons was 1,324.2 mm. The runoff loading of nutrients caused by runoff water was measured as follows. The total-N was 149.23 and $8.67kg\;ha^{-1}$ (total amount=$157.90kg^{-1}ha^{-1}yr^{-1}$), the ammonia-N 102.98 and $4.44kg\;ha^{-1}$ ($107.42kg^{-1}ha^{-1}yr^{-1}$), the nitrate-N 28.45 and $1.23kg\;ha^{-1}$ ($29.68kg^{-1}ha^{-1}yr^{-1}$), the total-P 4.16 and $0.38kg\;ha^{-1}$ ($4.54kg^{-1}ha^{-1}yr^{-1}$) during cropping and non-cropping season respectively. When the loss ratio was calculated based on amounts of chemical fertilizer, about 68.6% of nitrogen and 16.7% of phosphorus was lost by runoff from applied fertilizer amount.

  • PDF