• 제목/요약/키워드: ann

검색결과 2,350건 처리시간 0.026초

연결선 파괴에 의한 인공 신경망의 크기 축소 (The Size Reduction of Artificial Neural Network by Destroying the Connections)

  • 이재식;이혁주
    • 한국경영과학회지
    • /
    • 제27권1호
    • /
    • pp.33-51
    • /
    • 2002
  • A fully connected Artificial Neural Network (ANN) contains many connections. Compared to the pruned ANN with fewer connections, the fully connected ANN takes longer time to produce solutions end may not provide appropriate solutions to new unseen date. Therefore, by reducing the sloe of ANN, we can overcome the overfitting problem and increase the computing speed. In this research, we reduced the size of ANN by destroying the connections. In other words, we investigated the performance change of the reduced ANN by systematically destroying the connections. Then we found the acceptable level of connection-destruction on which the resulting ANN Performs as well as the original fully connected ANN. In the previous researches on the sloe reduction of ANN, the reduced ANN had to be retrained every time some connections were eliminated. Therefore, It tool lolly time to obtain the reduced ANN. In this research, however, we provide the acceptable level of connection-destruction according to the size of the fully connected ANN. Therefore, by applying the acceptable level of connection-destruction to the fully connected ANN without any retraining, the reduced ANN can be obtained efficiently.

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.

ANN-Incorporated satin bowerbird optimizer for predicting uniaxial compressive strength of concrete

  • Wu, Dizi;LI, Shuhua;Moayedi, Hossein;CIFCI, Mehmet Akif;Le, Binh Nguyen
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.281-291
    • /
    • 2022
  • Surmounting complexities in analyzing the mechanical parameters of concrete entails selecting an appropriate methodology. This study integrates a novel metaheuristic technique, namely satin bowerbird optimizer (SBO) with artificial neural network (ANN) for predicting uniaxial compressive strength (UCS) of concrete. For this purpose, the created hybrid is trained and tested using a relatively large dataset collected from the published literature. Three other new algorithms, namely Henry gas solubility optimization (HGSO), sunflower optimization (SFO), and vortex search algorithm (VSA) are also used as benchmarks. After attaining a proper population size for all algorithms, the Utilizing various accuracy indicators, it was shown that the proposed ANN-SBO not only can excellently analyze the UCS behavior, but also outperforms all three benchmark hybrids (i.e., ANN-HGSO, ANN-SFO, and ANN-VSA). In the prediction phase, the correlation indices of 0.87394, 0.87936, 0.95329, and 0.95663, as well as mean absolute percentage errors of 15.9719, 15.3845, 9.4970, and 8.0629%, calculated for the ANN-HGSO, ANN-SFO, ANN-VSA, and ANN-SBO, respectively, manifested the best prediction performance for the proposed model. Also, the ANN-VSA achieved reliable results as well. In short, the ANN-SBO can be used by engineers as an efficient non-destructive method for predicting the UCS of concrete.

SEM-ANN 2단계 분석에서 예측성능과 변수중요도의 비교연구 (Comparative Study of Prediction Performance and Variable Importance in SEM-ANN Two-stage Analysis)

  • 권순동;조의;방화룡
    • Journal of Information Technology Applications and Management
    • /
    • 제31권1호
    • /
    • pp.11-25
    • /
    • 2024
  • The purpose of this study is to investigate the improvement of prediction performance and changes in variable importance in SEM-ANN two-stage analysis. 366 cosmetics repurchase-related survey data were analyzed and the results were presented. The results of this study are summarized as follows. First, in SEM-ANN two-stage analysis, SEM and ANN models were trained with train data and predicted with test data, respectively, and the R2 was showed. As a result, the prediction performance was doubled from SEM 0.3364 to ANN 0.6836. Looking at this degree of R2 improvement as the effect size f2 of Cohen (1988), it corresponds to a very large effect at 110%. Second, as a result of comparing changes in normalized variable importance through SEM-ANN two-stage analysis, variables with high importance in SEM were also found to have high importance in ANN, but variables with little or no importance in SEM became important in ANN. This study is meaningful in that it increased the validity of the comparison by using the same learning and evaluation method in the SEM-ANN two-stage analysis. This study is meaningful in that it compared the degree of improvement in prediction performance and the change in variable importance through SEM-ANN two-stage analysis.

일 유출량 해석을 위한 SWAT 모형과 인공신경망의 연계 (Combining SWAT model with artificial neural networks for modelling a daily discharge)

  • 이도훈;김남원;정일문
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.195-195
    • /
    • 2012
  • 인공신경망 모형은 복잡하고 비선형의 입력과 출력 관계를 잘 반영할 수 있어서 유출 모델링에 널리 적용되어 왔다. 그러나 인공신경망 모형은 강우나 유역특성의 공간적 분포를 반영하는 것이 어려우며 물리적 개념이 결여되어 있는 단점이 있다. 본 연구에서는 유역특성과 물리적 개념을 반영할 수 있는 물리기반 모형과 인공신경망 모형의 장점들을 조합하여 물리기반 모형의 일 유출량 해석 능력을 향상하기 위하여 SWAT 모형과 인공신경망(ANN)을 연계하였다. SWAT-ANN 연계모형은 두 단계로 구성되어 진다. 첫 번째 단계에서는 관측 자료를 이용하여 SWAT 모형을 보정한다. 두 번째 단계에서는 첫 번째 단계에서 계산한 소유역별 SWAT 모형의 유출결과를 ANN의 입력자료로 이용하여 SWAT-ANN 연계모형을 구축한다. SCE-UA 최적화 방법을 적용하여 SWAT 모형의 매개변수들을 보정하였고, ANN 학습은 3층의 feed-forward 역전파 알고리즘에 기초한 Bayesian Regularization 방법을 적용하였다. ANN 은닉층의 뉴런 및 전달함수는 시행착오를 통하여 적절한 ANN 구조를 설정하여 SWAT-ANN 연계모형의 일유출량을 모의하였다. 여러 가지 통계적 오차기준을 이용하여 보청천 유역에서 SWAT-ANN 연계모형의 결과와 SWAT 단독 모형의 결과를 비교하였다. SWAT-ANN 연계모형이 SWAT 단독 모형보다 더 우수한 결과를 나타내어 일 유출량 해석을 위한 SWAT-ANN 연계모형의 유용성을 확인할 수 있었다.

  • PDF

Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model

  • Tran, Viet-Linh;Jang, Yun;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.319-335
    • /
    • 2021
  • This study proposes a new and highly-accurate artificial intelligence model, namely ANN-IP, which combines an interior-point (IP) algorithm and artificial neural network (ANN), to improve the axial compression capacity prediction of elliptical concrete-filled steel tubular (CFST) columns. For this purpose, 145 tests of elliptical CFST columns extracted from the literature are used to develop the ANN-IP model. In this regard, axial compression capacity is considered as a function of the column length, the major axis diameter, the minor axis diameter, the thickness of the steel tube, the yield strength of the steel tube, and the compressive strength of concrete. The performance of the ANN-IP model is compared with the ANN-LM model, which uses the robust Levenberg-Marquardt (LM) algorithm to train the ANN model. The comparative results show that the ANN-IP model obtains more magnificent precision (R2 = 0.983, RMSE = 59.963 kN, a20 - index = 0.979) than the ANN-LM model (R2 = 0.938, RMSE = 116.634 kN, a20 - index = 0.890). Finally, a new Graphical User Interface (GUI) tool is developed to use the ANN-IP model for the practical design. In conclusion, this study reveals that the proposed ANN-IP model can properly predict the axial compression capacity of elliptical CFST columns and eliminate the need for conducting costly experiments to some extent.

Application of artificial neural network model in regional frequency analysis: Comparison between quantile regression and parameter regression techniques.

  • Lee, Joohyung;Kim, Hanbeen;Kim, Taereem;Heo, Jun-Haeng
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.170-170
    • /
    • 2020
  • Due to the development of technologies, complex computation of huge data set is possible with a prevalent personal computer. Therefore, machine learning methods have been widely applied in the hydrologic field such as regression-based regional frequency analysis (RFA). The main purpose of this study is to compare two frameworks of RFA based on the artificial neural network (ANN) models: quantile regression technique (QRT-ANN) and parameter regression technique (PRT-ANN). As an output layer of the ANN model, the QRT-ANN predicts quantiles for various return periods whereas the PRT-ANN provides prediction of three parameters for the generalized extreme value distribution. Rainfall gauging sites where record length is more than 20 years were selected and their annual maximum rainfalls and various hydro-meteorological variables were used as an input layer of the ANN model. While employing the ANN model, 70% and 30% of gauging sites were used as training set and testing set, respectively. For each technique, ANN model structure such as number of hidden layers and nodes was determined by a leave-one-out validation with calculating root mean square error (RMSE). To assess the performances of two frameworks, RMSEs of quantile predicted by the QRT-ANN are compared to those of the PRT-ANN.

  • PDF

AFLC 제어기에 의한 유도전동기의 ANN 센서리스 제어 (ANN Sensorless Control of Induction Motor with AFLC Controller)

  • 최정식;고재섭;정동화
    • 전력전자학회논문지
    • /
    • 제11권3호
    • /
    • pp.224-232
    • /
    • 2006
  • 본 논문은 적응 퍼지 제어기에 의한 유도전동기의 ANN 센서리스 제어를 제시한다. 또한 AFC를 사용하여 속도를 제어하고 ANN 제어기를 이용하여 속도를 추정한다. 신경회로망의 역전파 알고리즘은 전동기 속도의 실시간 추정에 사용된다. 요구상태 변수와 실제 상태는 실제 상태 변수는 요구값에 일치하기 위해서 역전파 알고리즘에 의해 회전자 속도를 조절한다. 제시된 제어 알고리즘 AFLC와 ANN 제어기는 유도전동기 드라이브 시스템 제어에 적용된다. 그리고 본 논문은 AFLC와 ANN 제어기의 우수한 결과를 나타낸다.

A DFT and QSAR Study of Several Sulfonamide Derivatives in Gas and Solvent

  • Abadi, Robabeh Sayyadi kord;Alizadehdakhel, Asghar;Paskiabei, Soghra Tajadodi
    • 대한화학회지
    • /
    • 제60권4호
    • /
    • pp.225-234
    • /
    • 2016
  • The activity of 34 sulfonamide derivatives has been estimated by means of multiple linear regression (MLR), artificial neural network (ANN), simulated annealing (SA) and genetic algorithm (GA) techniques. These models were also utilized to select the most efficient subsets of descriptors in a cross-validation procedure for non-linear -log (IC50) prediction. The results obtained using GA-ANN were compared with MLR-MLR, MLR-ANN, SA-ANN and GA-ANN approaches. A high predictive ability was observed for the MLR-MLR, MLR-ANN, SA-ANN and MLR-GA models, with root mean sum square errors (RMSE) of 0.3958, 0.1006, 0.0359, 0.0326 and 0.0282 in gas phase and 0.2871, 0.0475, 0.0268, 0.0376 and 0.0097 in solvent, respectively (N=34). The results obtained using the GA-ANN method indicated that the activity of derivatives of sulfonamides depends on different parameters including DP03, BID, AAC, RDF035v, JGI9, TIE, R7e+, BELM6 descriptors in gas phase and Mor 32u, ESpm03d, RDF070v, ATS8m, MATS2e and R4p, L1u and R3m in solvent. In conclusion, the comparison of the quality of the ANN with different MLR models showed that ANN has a better predictive ability.

Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns

  • Quang-Viet Vu;Sawekchai Tangaramvong;Thu Huynh Van;George Papazafeiropoulos
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.759-779
    • /
    • 2023
  • The paper proposes two hybrid metaheuristic optimization and artificial neural network (ANN) methods for the close prediction of the ultimate axial compressive capacity of concentrically loaded concrete filled double skin steel tube (CFDST) columns. Two metaheuristic optimization, namely genetic algorithm (GA) and particle swarm optimization (PSO), approaches enable the dynamic training architecture underlying an ANN model by optimizing the number and sizes of hidden layers as well as the weights and biases of the neurons, simultaneously. The former is termed as GA-ANN, and the latter as PSO-ANN. These techniques utilize the gradient-based optimization with Bayesian regularization that enhances the optimization process. The proposed GA-ANN and PSO-ANN methods construct the predictive ANNs from 125 available experimental datasets and present the superior performance over standard ANNs. Both the hybrid GA-ANN and PSO-ANN methods are encoded within a user-friendly graphical interface that can reliably map out the accurate ultimate axial compressive capacity of CFDST columns with various geometry and material parameters.