• Title/Summary/Keyword: anisotropic thin shells

Search Result 9, Processing Time 0.025 seconds

A Study on the Analysis of Anisotropic Thin and Thick Shells (비등방성 얇은 쉘 및 두꺼운 쉘의 해석연구)

  • Park Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.525-530
    • /
    • 2005
  • In this study, it is presented analysis results of bending problems in the anisotropic thick shell and the anisotropic thin shell bending problems. In the numerical analysis of various mechanical problems involving complex partial differential equations, finite element method is used. Both Kirchoffs assumptions and Mindlin assumptions are used as the basic governing equations of bending problems in the anisotropic shells. The analysis results are compared between the anisotropic thick shells and the anisotropic thin shells for the various width-thickness ratios. The numerical method of this study will be contributed not only to analysis the bending behavior of anisotropic shells but also to design the anisotropic shells.

  • PDF

A Comparative Analysis of Anisotropic Thick Cylindrical Shells and Anisotropic Thin Cylindrical Shells by Finite Element Method (유한요소법에 의한 비등방성 두꺼운 원통형 쉘 및 얇은 원통형 쉘의 비교 해석)

  • Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.17-23
    • /
    • 2010
  • This paper is presented for the analysis results of the bending problems of the anisotropic cylindrical shells. In the numerical analysis of various mechanical problems involving complex partial differential equations, Finite element method is used to analyze the governing equations of anisotropic cylindrical shells. Both thin shell theory and thick shell theory are used as the basic governing equations of bending problems in the anisotropic cylindrical shells. The analysis results are compared between the anisotropic thick cylindrical shells and the anisotropic thin cylindrical shells. The results of this study will be contribute to analyze the bending behavior of anisotropic cylindrical shells.

  • PDF

Numerical Analysis of Anisotropic Laminated Shallow Shells with Shear Deformation (전단변형을 고려한 이방성 적층 편평 쉘의 수치해석)

  • 권익노;최용희;김재열;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.283-290
    • /
    • 2001
  • Various laminates consisting of thin, unidirectional layers may be achieved by laying up laminae in different reinforcement directions and stacking sequences. Thus, the behavior of nonhomogeneous, anisotropic laminated structures is quite different from that of isotropic ones. The anisotropic laminated shell theory derived here, that includes the effect of transverse shear deformations, can give higher accuracy than thin shell theories. In this paper, by using closed-form solutions for shallow shells having simple supported boundary, extensive numerical study for anisotropic laminated shells were made to investigate the stacking sequence effects for various shells, and to show comparisons to the results between this paper and the existing literature.

  • PDF

Geometrically Nonlinear Analysis of Hinged Cylindrical Laminated Composite Shells (활절로 지지된 원통형 적층복합쉘의 기하학적 비선형 해석)

  • Han, Sung-Cheon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.1-10
    • /
    • 2012
  • In the present study, an Element-Based Lagrangian Formulation for the nonlinear analysis of shell structures is presented. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation compared with the traditional Lagrangian Formulation. The Element-Based Lagrangian Formulation of a 9-node resultant-stress shell element is presented for the anisotropic composite material. The element is free of both membrane and shear locking behavior by using the assumed natural strain method such that the element performs very well in thin shell problems. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. Numerical examples for laminated composite curved shells presented herein clearly show the validity of the present approach and the accuracy of the developed shell element.

An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells

  • Han, S.C.;Kim, K.D.;Kanok-Nukulchai, W.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.807-829
    • /
    • 2004
  • The Element-Based Lagrangian Formulation of a 9-node resultant-stress shell element is presented for the isotropic and anisotropic composite material. The effect of the coupling term between the bending strain and displacement has been investigated in the warping problem. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation compared with the traditional Lagrangian Formulation. The element is free of both membrane and shear locking behavior by using the assumed natural strain method such that the element performs very well in thin shell problems. In composite plates and shells, the transverse shear stiffness is defined by an equilibrium approach instead of using the shear correction factor. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. Several numerical analyses are presented and discussed in order to investigate the capabilities of the present shell element. The results showed very good agreement compared with well-established formulations in the literature.

Finite Element of Composite Shells Based on General Curvilinear Coordinates (일반적인 곡선좌표계에 기초한 복합재료 적층쉘의 유한요소 해석)

  • 노희열;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.173-176
    • /
    • 2000
  • Finite element model based on the Naghdi's shell theory in the general tensor-based form is formulated in the present study. Partial mixed variational functional for assumed strain is formulated in order to avoid the severe locking troubles known as transverse shear and membrane locking. The proposed assumed strain element in general tensor Naghdi's shell model provides very accurate solutions for thin shells in benchmark problems. In additions, linear elastic constitutive equations are given in the general curvilinear coordinate system including anisotropic layered structures. Thus laminated composited shell structures are easily analyzed in the present formulation.

  • PDF

Analysis of wrinkling formation of anisotropic sheet metal (이방성 판재의 주름 발생 해석)

  • 손영진;박기철;김영석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.21-27
    • /
    • 1998
  • An analysis for the prediction of wrinkling formation in curved sheets during metal froming is presented. We construct "Wrinkling Limit diagram"(WLD) which represent the combinations of the critical principal stresses for wrinkling formation in curved sheet elements subjected to biaxial plane stress. Here the scheme of plastic bifurcation theory for thin shells based on the Donnell-Mushtari-Vlasov shell theory is used. In this study, the effects of the material variables (yield stress, plastic hardening coefficient, plastic anisotropic parameter, and so on) and sheet geometry on the critical conditions for wrinkling is carried out numerically.merically.

  • PDF

Mechanical Characteristics of Shell Members Considering the Geometrical and Material Nonlinearity (기하 및 재료 비선형을 고려한 셸 부재의 역학적 특성)

  • Kim, Ki-Tae;Park, Beom-Hee;Kim, Da-Jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.31-39
    • /
    • 2018
  • This paper analyse the mechanical characteristics of geometrical and material nonlinearity behavior of cylindrical shell roofs subjected to a concentrated load. The shell elements were modeled using 'NISA2016' software as 3D general shell element and 3D composite shell element. The 3D shell element includes deformation due to bending, membrane, membrane-bending coupling and shear perpendicular to the grain effects is suited for modeling moderately thick or thin general shells and laminated composite shells. And The 3D composite shell element consists of a number of layers of perfectly bonded anisotropic and orthotropic materials. The purpose of this research is to analysis the load-deflection curves considering the combined geometric and material nonlinearity of cylindrical shells. In a shallowed cylindrical shell, snap-through curve can be found.

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.