• Title/Summary/Keyword: anisotropic error

Search Result 39, Processing Time 0.027 seconds

Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models

  • Hajian, Alireza;Bayat, Meysam
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.291-304
    • /
    • 2022
  • Maximum shear modulus (Gmax or G0) is an important soil property useful for many engineering applications, such as the analysis of soil-structure interactions, soil stability, liquefaction evaluation, ground deformation and performance of seismic design. In the current study, bender element (BE) tests are used to evaluate the effect of the void ratio, effective confining pressure, grading characteristics (D50, Cu and Cc), anisotropic consolidation and initial fabric anisotropy produced during specimen preparation on the Gmax of sand-gravel mixtures. Based on the tests results, an empirical equation is proposed to predict Gmax in granular soils, evaluated by the experimental data. The artificial neural network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were also applied. Coefficient of determination (R2) and Root Mean Square Error (RMSE) between predicted and measured values of Gmax were calculated for the empirical equation, ANN and ANFIS. The results indicate that all methods accuracy is high; however, ANFIS achieves the highest accuracy amongst the presented methods.

Analysis of Manganese Nodule Abundance in KODOS Area (KODOS 지역의 망간단괴 부존률 분포해석)

  • Jung, Moon Young;Kim, In Kee;Sung, Won Mo;Kang, Jung Keuk
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.199-211
    • /
    • 1995
  • The deep sea camera system could render it possible to obtain the detailed information of the nodule distribution, but difficult to estimate nodule abundance quantitatively. In order to estimate nodule abundance quantitatively from deep seabed photographs, the nodule abundance equation was derived from the box core data obtained in KODOS area(long.: $154^{\circ}{\sim}151^{\circ}W$, lat.: $9^{\circ}{\sim}12^{\circ}N$) during two survey cruises carried out in 1989 and 1990. The regression equation derived by considering extent of burial of nodule to Handa's equation compensates for the abundance error attributable to partial burial of some nodules by sediments. An average long axis and average extent of burial of nodules in photographed area are determined according to the surface textures of nodules, and nodule coverage is calculated by the image analysis method. Average nodule abundance estimated from seabed photographs by using the equation is approximately 92% of the actual average abundance in KODOS area. The measured sampling points by box core or free fall grab are in general very sparse and hence nodule abundance distribution should be interpolated and extrapolated from measured data to uncharacterized areas. The another goal of this study is to depict continuous distribution of nodule abundance in KODOS area by using PC-version of geostatistical model in which several stages are systematically proceeded. Geostatistics was used to analyse spatial structure and distribution of regionalized variable(nodule abundance) within sets of real data. In order to investigate the spatial structure of nodule abundance in KODOS area, experimental variograms were calculated and fitted to a spherical models in isotropy and anisotropy, respectively. The spherical structure models were used to map out distribution of the nodule abundance for isotropic and anisotropic models by using the kriging method. The result from anisotropic model is much more reliable than one of isotropic model. Distribution map of nodule abundance produced by PC-version of geostatistical model indicates that approximately 40% of KODOS area is considered to be promising area(nodule abundance > $5kg/m^2$) for mining in case of anisotropy.

  • PDF

Realization of sensitivity symmetry of Hall Sensor using Trench Structure and Ferromagnetic Thin Films (트랜치 구조 및 강자성체 박막을 이용한 홀 센서의 감도 대칭성 구현)

  • Park, Jae-Sung;Choi, Chae-Hyoung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.4
    • /
    • pp.29-34
    • /
    • 2008
  • Generally, for conventional 3-D Hall sensor it is general that the sensitivity for $B_z$ is about 1/10 compared with those for $B_x$ or $B_y$. Therefore, in this work, we proposed 3-D Hall sensor with new structures. We have increased the sensitivity about 6 times to form the trench using anisotropic etching. And we have increased the sensitivity for the $B_z$ by 80 % compared with those of $B_x$ and $B_y$ using deposition of the ferromagnetic thin films on the bottom surface of the wafer to concentrate the magnetic fluxes. Sensitivities of the fabricated sensor with Ni/Fe film for $B_x,\;B_y$, and $B_z$ were measured as 361mV/T, 335mV/T, and 286mV/T, respectively. It has also showed sine wave of Hall voltages over a $360^{\circ}$ rotation. A packaged sensing part was $1.2{\times}1.2mm^2$. The measured linearity of the sensor was within ${\pm}3%$ of error. Resolution of the fabricated sensor was measured by $1{\times}10^{-5}T$.

Automatic Liver Segmentation on Abdominal Contrast-enhanced CT Images for the Pre-surgery Planning of Living Donor Liver Transplantation

  • Jang, Yujin;Hong, Helen;Chung, Jin Wook
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.37-40
    • /
    • 2014
  • Purpose For living donor liver transplantation, liver segmentation is difficult due to the variability of its shape across patients and similarity of the density of neighbor organs such as heart, stomach, kidney, and spleen. In this paper, we propose an automatic segmentation of the liver using multi-planar anatomy and deformable surface model in portal phase of abdominal contrast-enhanced CT images. Method Our method is composed of four main steps. First, the optimal liver volume is extracted by positional information of pelvis and rib and by separating lungs and heart from CT images. Second, anisotropic diffusing filtering and adaptive thresholding are used to segment the initial liver volume. Third, morphological opening and connected component labeling are applied to multiple planes for removing neighbor organs. Finally, deformable surface model and probability summation map are performed to refine a posterior liver surface and missing left robe in previous step. Results All experimental datasets were acquired on ten living donors using a SIEMENS CT system. Each image had a matrix size of $512{\times}512$ pixels with in-plane resolutions ranging from 0.54 to 0.70 mm. The slice spacing was 2.0 mm and the number of images per scan ranged from 136 to 229. For accuracy evaluation, the average symmetric surface distance (ASD) and the volume overlap error (VE) between automatic segmentation and manual segmentation by two radiologists are calculated. The ASD was $0.26{\pm}0.12mm$ for manual1 versus automatic and $0.24{\pm}0.09mm$ for manual2 versus automatic while that of inter-radiologists was $0.23{\pm}0.05mm$. The VE was $0.86{\pm}0.45%$ for manual1 versus automatic and $0.73{\pm}0.33%$ for manaual2 versus automatic while that of inter-radiologist was $0.76{\pm}0.21%$. Conclusion Our method can be used for the liver volumetry for the pre-surgery planning of living donor liver transplantation.

Application of TULIP/STREAM code in 2-D fast reactor core high-fidelity neutronic analysis

  • Du, Xianan;Choe, Jiwon;Choi, Sooyoung;Lee, Woonghee;Cherezov, Alexey;Lim, Jaeyong;Lee, Minjae;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1871-1885
    • /
    • 2019
  • The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast reactors play an important role in the generation-IV concept, it was decided that the code should be upgraded for the analysis of fast neutron spectrum reactors. This paper presents a coupled code - TULIP/STREAM, developed for the fast reactor assembly and core calculations. The TULIP code produces self-shielded multi-group cross-sections using a one-dimensional cylindrical model. The generated cross-section library is used in the STREAM code which solves eigenvalue problems for a two-dimensional assembly and a multi-assembly whole reactor core. Multiplication factors and steady-state power distributions were compared with the reference solutions obtained by the continuous energy Monte-Carlo code MCS. With the developed code, a sensitivity study of the number of energy groups, the order of anisotropic PN scattering, and the multi-group cross-section generation model was performed on the keff and power distribution. The 2D core simulation calculations show that the TULIP/STREAM code gives a keff error smaller than 200 pcm and the root mean square errors of the pin-wise power distributions within 2%.

Polarization Analysis of Composite Optical Films for Viewing Angle Improvement of Liquid Crystal Display (액정 디스플레이 시야각 향상을 위한 복합판의 편광특성 분석)

  • Ryu, Jang-Wi;Kim, Sang-Youl;Kim, Yong-Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.4
    • /
    • pp.241-248
    • /
    • 2009
  • We suggest a new method to determine the off-alignment error of the composite film, together with in-plane($R_{in}$) and out-of-plane retardation($R_{th}$) of the compensation film, simultaneously. The composite film consists of a polarizing film and a compensation film for improvement of viewing angle of a liquid crystal display. We regarded the compensation film as o-plate with its optic axis along an arbitrary direction. By using an extended Jones matrix method, the polarization characteristics of the composite film are examined. The calculated Fourier constants, ($\alpha$, $\beta$) curves of the composite film as the azimuth angle is varied at the incident angles of $0^{\circ}$ and $50^{\circ}$, respectively, are used to determine the axis misalignment, the tilt angle and the azimuth angle of the compensation film by adopting the linear regressional analysis technique. Since this method can be applied for the inspection of the composite film even after laminating the polarizing film and the compensation film, it will be useful for simplifying the manufacturing process and reducing the production cost of liquid crystal display panels.

Radiation Therapy Using M3 Wax Bolus in Patients with Malignant Scalp Tumors (악성 두피 종양(Scalp) 환자의 M3 Wax Bolus를 이용한 방사선치료)

  • Kwon, Da Eun;Hwang, Ji Hye;Park, In Seo;Yang, Jun Cheol;Kim, Su Jin;You, Ah Young;Won, Young Jinn;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • Purpose: Helmet type bolus for 3D printer is being manufactured because of the disadvantages of Bolus materials when photon beam is used for the treatment of scalp malignancy. However, PLA, which is a used material, has a higher density than a tissue equivalent material and inconveniences occur when the patient wears PLA. In this study, we try to treat malignant scalp tumors by using M3 wax helmet with 3D printer. Methods and materials: For the modeling of the helmet type M3 wax, the head phantom was photographed by CT, which was acquired with a DICOM file. The part for helmet on the scalp was made with Helmet contour. The M3 Wax helmet was made by dissolving paraffin wax, mixing magnesium oxide and calcium carbonate, solidifying it in a PLA 3D helmet, and then eliminated PLA 3D Helmet of the surface. The treatment plan was based on Intensity-Modulated Radiation Therapy (IMRT) of 10 Portals, and the therapeutic dose was 200 cGy, using Analytical Anisotropic Algorithm (AAA) of Eclipse. Then, the dose was verified by using EBT3 film and Mosfet (Metal Oxide Semiconductor Field Effect Transistor: USA), and the IMRT plan was measured 3 times in 3 parts by reproducing the phantom of the head human model under the same condition with the CT simulation room. Results: The Hounsfield unit (HU) of the bolus measured by CT was $52{\pm}37.1$. The dose of TPS was 186.6 cGy, 193.2 cGy and 190.6 cGy at the M3 Wax bolus measurement points of A, B and C, and the dose measured three times at Mostet was $179.66{\pm}2.62cGy$, $184.33{\pm}1.24cGy$ and $195.33{\pm}1.69cGy$. And the error rates were -3.71 %, -4.59 %, and 2.48 %. The dose measured with EBT3 film was $182.00{\pm}1.63cGy$, $193.66{\pm}2.05cGy$ and $196{\pm}2.16cGy$. The error rates were -2.46 %, 0.23 % and 2.83 %. Conclusions: The thickness of the M3 wax bolus was 2 cm, which could help the treatment plan to be established by easily lowering the dose of the brain part. The maximum error rate of the scalp surface dose was measured within 5 % and generally within 3 %, even in the A, B, C measurements of dosimeters of EBT3 film and Mosfet in the treatment dose verification. The making period of M3 wax bolus is shorter, cheaper than that of 3D printer, can be reused and is very useful for the treatment of scalp malignancies as human tissue equivalent material. Therefore, we think that the use of casting type M3 wax bolus, which will complement the making period and cost of high capacity Bolus and Compensator in 3D printer, will increase later.

A Study on Anisotropic Compression Behavior of Illite (일라이트의 비등방적 압축특성 연구)

  • Yun, Seohee;Lee, Yongjae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • High-pressure synchrotron X-ray powder diffraction experiments were performed on natural illite (K0.65Al2(Al0.65Si3.35)O10(OH)2) using diamond anvil cell (DAC) under two different pressure transmitting media (PTM), i.e., water and ME41 (methanol:ethanol = 4:1 by volume). When using water as PTM, occasional heating was applied up to about 250℃ while reaching pressure up to 2.7 GPa in order to promote both hydrostatic conditions and intercalation of water molecules into the layer. When using ME41, pressure was reached up to 6.9 GPa at room temperature. Under these conditions, illite did not show any expansion of interlayer distance or phase transitions. Pressure-volume data were used to derive bulk moduli (K0) of 45(3) GPa under water and 51(3) GPa under ME41 PTM. indicating no difference in compressibility within the analytical error. Linear compressibilities were then calculated to be βa = 0.0025, βb = 0.0029, βc = 0.0144 under ME41 PTM showing the c-axis is ca. six times more compressible than a- and b-axes. These elastic behaviors of illite were compared to muscovite, one of its structural analogues.

The Noise Performance of Diffusion Tensor Image with Different Gradient Schemes (확산 텐서 영상에서 확산 경사자장의 방향수에 따른 잡음 분석)

  • Lee Young-Joo;Chang Yongmin;Kim Yong-Sun
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.439-445
    • /
    • 2004
  • Diffusion tensor image(DTI) exploits the random diffusional motion of water molecules. This method is useful for the characterization of the architecture of tissues. In some tissues, such as muscle or cerebral white matter, cellular arrangement shows a strongly preferred direction of water diffusion, i.e., the diffusion is anisotropic. The degree of anisotropy is often represented using diffusion anisotropy indices (relative anisotropy(RA), fractional anisotropy(FA), volume ratio(VR)). In this study, FA images were obtained using different gradient schemes(N=6, 11, 23, 35. 47). Mean values and the standard deviations of FA were then measured at several anatomic locations for each scheme. The results showed that both mean values and the standard deviations of FA were decreased as the number of gradient directions were increased. Also, the standard error of ADC measurement decreased as the number of diffusion gradient directions increased. In conclusion, different gradient schemes showed a significantly different noise performance and the schem with more gradient directions clearly improved the quality of the FA images. But considering acquisition time of image and standard deviation of FA, 23 gradient directions is clinically optimal.