• Title/Summary/Keyword: animal-based functional food ingredients

Search Result 9, Processing Time 0.098 seconds

Application of Microbial Transglutaminase and Functional Ingredients for the Healthier Low-Fat/Salt Meat Products: A Review (건강지향의 저지방/저염 식육가공품을 위한 Microbial Transglutaminase와 기능성 소재 이용 기술)

  • Lee, Hong-Chul;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.30 no.6
    • /
    • pp.886-895
    • /
    • 2010
  • The level of fat and salt can affect the product quality and storage stability of processed meats. Additionally, consumers' demands require dietary guidelines for developing low-fat/salt functional foods. Microbial transglutaminase (MTGase), which enhances textural properties by catalyzing protein-protein cross-linkages, was introduced to develop healthier lowfat/salt meat products. The potential possibilities of low-fat/salt processed meats were reviewed under optimal conditions for functional ingredients from several previous studies. The addition of non-meat protein (e.g. sodium caseinate and soy protein isolates), hydrocolloids (e. g. konjac flour, carrageenan, and alginates), and MTGase alone or in combination with other functional ingredients improved textural and sensory properties similar to those of regularly processed meats. When MTGase was combined with hydrocolloids (konjac flour or sodium alginate) or other functional ingredients, gelling properties of meat protein were improved even at a low salt level. Based on these reviews, functional ingredients combined with new processing technologies could be incorporated into processed meats to improve the functionality of various low-fat/salt meat products.

Functionality and Application of Dietary Fiber in Meat Products

  • Kim, Hyun Jung;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.695-705
    • /
    • 2012
  • Dietary fiber naturally present in various sources of cereals, legumes, fruits and vegetables plays a physiological role in human health, such as lowering cholesterol and blood pressure, improving blood glucose control in diabetes, helping with weight loss and management, and reducing cancer risk. In addition, dietary fibers have has been added as a functional food ingredient to food products to provide water-holding capacity, viscosity, gel-forming ability, and fat-binding capacity to food products. These beneficial characteristics of dietary fiber components can improve the image of meat products to be healthy and functional food products. This article reviews the concept and current definition of dietary fibers in food products along with their health benefits and functional characteristics. Dietary fibers from different sources like cereals, legumes, fruits, and vegetables and soluble dietary fibers have been applied as functional ingredients to various types of meat products, such as beef patties, ground beef and pork, pork and chicken sausages, meatballs, and jerky etc. Based on the application of dietary fibers to different types of meat products, possible future characteristics in selecting appropriate dietary fiber ingredients and their proper incorporation are explored to develop and produce healthy and functional meat products with high dietary fiber contents.

Structure Characterization and Antihypertensive Effect of an Antioxidant Peptide Purified from Alcalase Hydrolysate of Velvet Antler

  • Seung Tae Im;Seung-Hong Lee
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.184-194
    • /
    • 2023
  • Recently, interest in food-derived bioactive peptides as promising ingredients for the prevention and improvement of hypertension is increasing. The purpose of this study was to determine the structure and antihypertensive effect of an antioxidant peptide purified from velvet antler in a previous study and evaluate its potential as a various bioactive peptide. Molecular weight (MW) and amino acid sequences of the purified peptide were determined by quadrupole time-of-flight electrospray ionization mass spectroscopy. The angiotensin I-converting enzyme (ACE) inhibition activity of the purified peptide was assessed by enzyme reaction methods and in silico molecular docking analysis to determine the interaction between the purified peptide and ACE. Also, antihypertensive effect of the purified peptide in spontaneously hypertensive rats (SHRs) was investigated. The purified antioxidant peptide was identified to be a pentapeptide Asp-Asn-Arg-Tyr-Tyr with a MW of 730.31 Da. This pentapeptide showed potent inhibition activity against ACE (IC50 value, 3.72 μM). Molecular docking studies revealed a good and stable binding affinity between purified peptide and ACE and indicated that the purified peptide could interact with HOH2570, ARG522, ARG124, GLU143, HIS387, TRP357, and GLU403 residues of ACE. Furthermore, oral administration of the pentapeptide significantly reduced blood pressure in SHRs. The pentapeptide derived from enzymatic hydrolysate of velvet antler is an excellent ACE inhibitor. It might be effectively applied as an animal-based functional food ingredient.

Whey Protein-Based Edible Films and Coatings in Food Industry (식품산업에서 유청 단백질을 이용한 식용 필름과 코팅의 활용)

  • Jayeon Yoo;Sujatha Kandasamy;Hyoun Wook Kim;Hyung-Ho Bae;Jun-Sang Ham
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.219-229
    • /
    • 2023
  • Consumer demand for products with health benefits and natural ingredients is significant for the expansion of functional foods. Edible films and coatings are an excellent way to diversify the market for functional foods and as substitutes for the prevailing packaging and products. Incorporation of whey protein (WP) and its active ingredients into edible films and coatings is a promising technique that can be applied to various food products. Numerous combinations can be used on an industrial scale depending on the purpose, product, nature of the film, type of active ingredient, and type of inclusions. In this review, we describe several characteristics of edible WP films and coatings used as novel packaging materials. WP-based packaging can play a beneficial role in sustainability because of the option of recycling materials rather than incinerating, as in synthetic laminates, because of the use of natural byproducts from the food industry as raw materials. However, cost-effectiveness is a driving force against industrial setbacks in current and future WP processing developments. The industrial application of this new technology depends on further scientific research aimed at identifying the mechanism of film formation to improve the performance of both the process and product. Furthermore, research such as consumer studies and long-term toxicity assessments are required to obtain significant market shares.

Composition, Structure, and Bioactive Components in Milk Fat Globule Membrane

  • Ahn, Yu-Jin;Ganesan, Palanivel;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • A unique biophysical membrane which surrounds the milk fat globules is called the milk fat globule membrane (MFGM). Various researches were studied about origin, composition, structure and bioactive components of MFGM. Bioactive protein components of MFGM play an important beneficiary function such as defense mechanism in new born. Among the bioactive lipid components from MFGM phospholipids showed health enhancing functions. The phospholipids also help in the production of certain dairy product from deterioration. MFGM phospholipids also showed antioxidant activity in some dairy products such as butter and ghee produced from milk of buffalo. Based on the beneficial effects, researchers developed MFGM as functional ingredients in various food products. This current review focuses on health enhancing function of MFGM and its components in various dairy products.

Comparison of Three Commercial Collagen Mixtures: Quality Characteristics of Marinated Pork Loin Ham

  • Choe, Juhui;Kim, Hack-Youn
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.345-353
    • /
    • 2019
  • Various commercial collagen mixtures aimed at improving the quality of meat products are available, but the optimal composition is unclear. This study aimed to compare the functional properties, including physicochemical characteristics and lipid oxidative stability, of loin ham marinated with three commercial collagen mixtures sold as food additives. The addition of collagen mixtures led to significant increases in the moisture content, water holding capacity (WHC), cooking yield, and instrumental tenderness, regardless of the type of collagen mixture. In particular, meat samples containing collagen mixture C showed the highest (p<0.05) WHC and tenderness among all groups. Furthermore, collagen mixture B induced increases (p<0.05) in pH values in both raw and cooked samples. The $a^*$ values of samples with collagen mixtures were lower (p<0.05) than those of samples without collagen mixtures. All collagen mixtures effectively improved oxidative stability during 7 days of storage at $4^{\circ}C$. The samples containing collagen mixture B had the lowest lipid oxidation (p<0.05) among groups. These results indicated that collagen mixture C could be used in injection brine to enhance the quality characteristics of meat products, particularly the WHC and tenderness. Collagen mixture A could be used for meat products with high fat contents based on its ability to improve lipid oxidative stability during long-term storage.

Manufacturing of Mozzarella Cheese Analogues: A Review (MozzarellaCheeseAnalogue제조에 관한 연구: 총설)

  • Lee, Joon-Ha;Song, Kwang-Young;Seo, Kun-Ho;Yoon, Yoh-Chang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.111-117
    • /
    • 2012
  • A number of recently developed cheese analogues that are available in dairy food markets are currently being produced for improving health or diet, and they include Mozzarella, Cheddar, American, Muenster, and other custom flavors. Cheese analogues have many benefits such as extended-and-improved shelf life, price stability, and functional qualities that include better texture, higher melting point, and better stretching properties. Various cheese analogues can now be made by using soybeans or soy protein products, gelatin, gum arabic, and other ingredients. Hence, in this study, on the basis of previously published studies, we recommend soy protein for cheese analogues, for improving the texture and flavor of cheese analogues. Moreover, the best conditions for making cheese analogues and the factors that affect the characterization of cheese analogues have been described in this paper.

  • PDF

Preparation and Characterization of a Polar Milk Lipid-enriched Component from Whey Powder

  • Lee, Kwanhyoung;Kim, Ara;Hong, Ki-Bae;Suh, Hyung Joo;Jo, Kyungae
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.209-220
    • /
    • 2020
  • Milk fat globule membrane (MFGM) is a lipid carrier in mammals including humans that consists mainly of polar lipids, like phospholipids and glycolipids. In this study, a process to enrich polar lipids in commercial butter and whey powder, including polar lipids of MFGM, was developed. WPC (whey protein concentrate) 60 was selected as the most suitable raw material based on the yield, phospholipid, protein, and lactose content of the polar lipid fraction obtained by ethanol extraction of two WPC (WPC60 and WPC70) and two buttermilk (A and B). After fractionation under optimum conditions, the polar-lipid enriched fraction from WPC60 contained 38.56% phospholipids. The content of glycolipids, cerebroside, lactosylceramide, ganglioside GM3, ganglioside GD3, was 0.97%, 0.55%, 0.09%, and 0.14%, respectively. Rancimat results showed that the oxidation stability of fish oil increased with an increase in the polar-lipid fraction by more than 30 times. In addition, the secretion of IL-6 and TNF-α decreased in a concentration-dependent manner after treatment of RAW 264.7 cells with 0.1 to 100 ppm of the polar lipid fraction. In this study, polar lipid concentrates with antioxidant and anti-inflammatory activity, were prepared from milk processing by-products. The MFGM polar lipid concentrates made from by-products are not only additives for infants, but are also likely to be used as antioxidants in cooking oils and as active ingredients for functional foods.

Comparison of Antioxidant Activities of Rice Bran Extracts by Different Extraction Methods (추출방법에 따른 미강 추출물의 항산화 활성 비교)

  • Ham, Hyeonmi;Woo, Koan Sik;Lee, Yu-Young;Park, Ji-Young;Lee, Byongwon;Choi, Yong-Hwan;Kim, In-Hwan;Lee, Junsoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.11
    • /
    • pp.1691-1695
    • /
    • 2016
  • The objective of this study was to determine the antioxidant activities of rice bran extracts by three different extraction methods. Rice bran was extracted by solvent extraction, saponification extraction, and supercritical fluid extraction. The antioxidant activities of the rice bran extracts were determined based on ABTS and DPPH radical scavenging activities, reducing power, and lipid peroxidation inhibitory activity. The unsaponifiable matter (USM) extracted by the saponification method showed higher ABTS (671.7 mg Trolox equivalent antioxidant capacity (TEAC)/g) and DPPH (330.7 mg TEAC/g) radical scavenging activities as well as reducing power ($A_{700}=1.14$) than those of the solvent extract (ME) and supercritical fluid extract (SFE). Inhibitory effect on lipid peroxidation was higher in USM (68.7%) and SFE (75.4%) compared to ME (47.8%). USM indicated relatively higher antioxidant activities compared with those of SFE and ME. These results show that the saponification method for extraction of USM from rice bran extracted was the most effective method for enhancement of antioxidant activity. In addition, these extracts from rice bran could be used as functional ingredients in the food industry.