• Title/Summary/Keyword: animal meat

Search Result 3,157, Processing Time 0.027 seconds

Porcine Blood Plasma Transgluataminase Combined with Thrombin and Fibrinogen as a Binder in Restructured Meat

  • Tseng, Tsai-Fuh;Tsai, Chong-Ming;Yang, Jeng-Huh;Chen, Ming-Tsao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1054-1058
    • /
    • 2006
  • The purpose of this study was to use pig blood plasma transglutaminase (TGase) combined with thrombin and fibrinogen as a binder, which was applied to restructured meat, and to investigate its effect on the restructured meat quality. Pig meat was obtained 10 h post mortem from a traditional market was ground using a 10 mm aperture plate. A binder admixture was added (TGase:thrombin:fibrinogen mixed as 0.5:1:20 (v/v/v) to which was added 12% of its volume of 0.25 M calcium chloride) at 0, 5, 10, 15 and 20% of meat weight. Measurements included cooking loss, shrinkage rate, shear value, total plate count, pH value, TBA value, color difference, tension strength and sensory evaluation. The results showed that ground meat containing 20% w/w of binder admixture had higher cooking loss, shrinkage rate and shear value (p<0.05). Addition of different percentages of binder admixture did not affect total plate count, pH value, TBA value, and sensory evaluation of restructured meat (p>0.05). Tension strength was increased with increased level of binder admixture. Addition up to 15% binder admixture to restructured meat showed better scores of sensory texture, flavor and total acceptability (p<0.05).

Effect on health from consumption of meat and meat products

  • Lee, Da Young;Lee, Seung Yun;Jo, Cheorun;Yoon, Yohan;Jeong, Jong Youn;Hur, Sun Jin
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.955-976
    • /
    • 2021
  • The aim of this study was to investigate the effects of dietary sodium nitrite and meat on human health. Sodium nitrite in processed meat is known to be one of the main precursors of carcinogens, such as N-nitroso compounds. However, we previously found that processed meat is not the primary source of sodium nitrite; nitrate or the conversion of nitrate in vegetables are contribute to generate more than 70% Sodium nitrite or nitrate containing compounds in body. Although the heavy consumption of meat is likely to cause various diseases, meat intake is not the only cause of colorectal cancer. Our review indicates that sodium nitrite derived from foods and endogenous nitric oxide may exhibit positive effects on human health, such as preventing cardiovascular disease or improving reproductive function. Therefore, further epidemiological studies considering various factors, such as cigarette consumption, alcohol consumption, stress index, salt intake, and genetic factors, are required to reliably elucidate the effects of dietary sodium nitrite and meat on the incidence of diseases, such as colorectal cancer.

Effect of Duck Feet Gelatin Concentration on Physicochemical, Textural, and Sensory Properties of Duck Meat Jellies

  • Kim, Hyun-Wook;Park, Jae-Hyun;Yeo, Eui-Joo;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Jeong, Tae-Jun;Choi, Yun-Sang;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.387-394
    • /
    • 2014
  • This study was conducted to determine the effect of duck feet gelatin concentration on the physicochemical, textural and sensory properties of duck meat jellies. Duck feet gelatin was prepared with acidic swelling and hot water extraction. In this study, four duck meat jellies were formulated with 3, 4, 5, and 6% duck feet gelatin, respectively. In the preliminary experiment, the increase in duck feet gelatin ranged from 5 to 20%, resulting in a significant (p<0.001) increase in the color score, but a decline in the hardness and dispersibility satisfaction scores. An increase in the added amount of duck feet gelatin contributed to decreased lightness and increased protein content in duck meat jellies. Regarding the textural properties, increase in the added amount of duck feet gelatin highly correlated with the hardness in the center (p<0.01, $R^2=0.91$), and edge (p<0.01, $R^2=0.89$), of duck meat jellies. Meanwhile, the increase in duck feet gelatin decreased the score for textural satisfaction; duck meat jellies containing 6% duck feet gelatin had a significantly lower textural satisfaction score, than those containing 3% duck feet gelatin (p<0.05). Furthermore, a significant difference in the overall acceptance of duck meat jellies formulated with 5% duck feet gelatin was observed, as compared to those prepared with 3% duck feet gelatin. Therefore, this study suggested that duck feet gelatin is a useful ingredient for manufacturing cold-cut meat products. In consideration of the sensory acceptance, the optimal level of duck feet gelatin in duck meat jellies was determined to be 5%.

Flavour Chemistry of Chicken Meat: A Review

  • Jayasena, Dinesh D.;Ahn, Dong Uk;Nam, Ki Chang;Jo, Cheorun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.732-742
    • /
    • 2013
  • Flavour comprises mainly of taste and aroma and is involved in consumers' meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration and formation of undesirable "warmed over flavour" in chicken meat products are supposed to be the lack of ${\alpha}$-tocopherol in chicken meat.

Effects of Non-meat Protein Binders and Acidification on the Efficiency of Cold-Set Pork Restructuring by High Pressure

  • Hong, Geun-Pyo;Chun, Ji-Yeon;Lee, Si-Kyung;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.32 no.3
    • /
    • pp.301-307
    • /
    • 2012
  • We investigated the effects of non-meat protein binders combined with glucono-${\delta}$-lactone (GdL) on the binding properties regarding restructured pork prepared by high-pressure treatment. Soy protein isolate (SPI), casein (CS), whey protein concentrate (WPC), and egg white (EW) were used as non-meat protein binders and compared with the control (no binder) and with the ${\kappa}$-carrageenan (KC) treatment. The compression and depression rates were 2.3 and 37 MPa/s, respectively, and pressurization was conducted at 200 MPa for 30 min at $4^{\circ}C$. After pressurization, the physical properties (pH, water-holding capacity, color, tensile strength, and microscopic structure) of the sample were evaluated. The combination of pressurization with acidification enabled cold-set meat binding, and the binding strength of restructured pork was enhanced by the addition of non-meat proteins. Among binders, SPI demonstrated the best efficiency in binding meat pieces. Therefore, the present study demonstrated that the combination of acidification and pressurization processes with the utilization of non-meat protein binders has a potential benefit in meat restructuring.

The Need for Research on the Comparison of Sensory Characteristics between Cultured Meat Produced Using Scaffolds and Meat

  • Sol-Hee Lee;Jungseok Choi
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.269-283
    • /
    • 2024
  • Cultured meat is one of the research areas currently in the spotlight in the agricultural and livestock industry, and refers to cells obtained from livestock that are proliferated and differentiated and processed into edible meat. These cell-cultured meats are mainly studied at the lab-scale by culturing them in flasks, and for commercial use, they are produced using scaffolds that mimic cell supports. Scaffolds are broadly divided into fiber scaffolds, hydrogels, and micro-carrier beads, and these are classified according to processing methods and materials. In particular, a scaffold is essential for mass production, which allows it to have appearance, texture, and flavor characteristics similar to meat. Because cultured meat is cultured in a state where oxygen is blocked, it may be lighter in color or produce less flavor substances than edible meat, but these can be compensated for by adding natural substances to the scaffolds or improving fat adhesion. In addition, it has the advantage of being able to express the texture characteristics of the scaffolds that make up the meat in various ways depending on the materials and manufacturing methods of the scaffolds. As a result, to increase consumers' preference for cultured meat and its similarity to edible meat, it is believed that manufacturing scaffolds taking into account the characteristics of edible meat will serve as an important factor. Therefore, continued research and interest in scaffolds is believed to be necessary.

Evaluation of the quality characteristics of nitrogen gas-stunned chicken meat and small intestine

  • Muhammad Shahbubul Alam;Dong-Heon Song;Sun-Moon Kang;Inho Hwang;Kuk-Hwan Seol;Soo-Hyun Cho;Jung-Hwan Jeon;Hyoun Wook Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.792-806
    • /
    • 2024
  • This study aimed to confirm the applicability of the new nitrogen (N2) gas stunning method in the broiler slaughtering process by comparing the meat and small intestine quality following different stunning methods (electrical, carbon dioxide (CO2), N2, and halal). Four treatments were compared: (i) electrical stunning (Elec), (ii) 80% CO2 gas stunning (CO2-gas), (iii) 98% N2 gas stunning (N2-gas), and (iv) the non-stunning method (halal). N2 gas stunning (98%) and the halal method were conducted at the pilot plant abattoir of the national institute of animal science, Korea, and electrical and 80% CO2 stunning were performed on the nearest commercial slaughter house. Meat pH24h, color (lightness, redness and yellowness), proximate composition, water holding capacity (WHC), cooking loss, and Warner-Bratzler shear force (WBSF) were measured, and in the small intestine, pH24h, color, thickness, and WBSF were measured. The Elec treatment showed high lightness, yellowness, and low redness in both meat and the small intestine, indicated by a pale color; the CO2-gas treatment showed high redness, low lightness, and low yellowness, and the coloration of meat from the N2-gas treatment was intermediate between Elec and CO2-gas. For other quality traits, the N2-gas showed good results and was between Elec and CO2-gas. Additionally, severe stress (low pH in both meats), low WHC in meat, and cracked small intestine with numerous apertures were observed in the CO2-gas, and pale colored hemorrhagic breast meat was found in the Elec. Therefore, in view of animal welfare and quality traits of meat and the small intestine, 98% N2 gas can be considered in broiler stunning.

The Effects of Immunocastration on Meat Quality and Sensory Properties of Pork Bellies

  • Jeong, Jong-Youn;Choi, Ji-Hun;Choi, Yun-Sang;Han, Doo-Jeong;Kim, Hack-Youn;Lee, Mi-Ai;Lee, Duk-Hun;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.372-380
    • /
    • 2011
  • This study was conducted to assess meat quality and sensory properties of pork bellies from immunocastrated males (IC) compared to meat from surgically castrated males (SC), intact males (IM), and females (FE). Pork bellies from IC had significantly higher pH values than meat from either SC or FE. Pork bellies from IC showed lower CIE $L^*$ values than those from SC, but were redder (higher CIE $a^*$ values) than meat from SC or FE. However, no differences in visual color were observed between pork bellies from IC and SC pigs using National Pork Producer Council scales. Water holding capacity was higher in SC and FE than that in IC. IC showed no significant difference in cooking loss and shear force values compared with those of SC. Both SC and IC had improved fat content when compared to that in IM, and IC meat showed a similar fat content to that of FE. Pork bellies from IC showed higher ratings for all visual evaluation traits than those of SC and were the same as meat from FE. Boar odor was not significantly different among the treatments. IC was rated similar to SC for taste, tenderness, and overall acceptability.

In-vitro meat: a promising solution for sustainability of meat sector

  • Kumar, Pavan;Sharma, Neelesh;Sharma, Shubham;Mehta, Nitin;Verma, Akhilesh Kumar;Chemmalar, S;Sazili, Awis Qurni
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.693-724
    • /
    • 2021
  • The in-vitro meat is a novel concept in food biotechnology comprising field of tissue engineering and cellular agriculture. It involves production of edible biomass by in-vitro culture of stem cells harvested from the muscle of live animals by self-organizing or scaffolding methodology. It is considered as efficient, environmental friendly, better ensuring public safety and nutritional security, as well as ethical way of producing meat. Source of stem cells, media ingredients, supply of large size bioreactors, skilled manpower, sanitary requirements, production of products with similar sensory and textural attributes as of conventional meat, consumer acceptance, and proper set up of regulatory framework are challenges faced in commercialization and consumer acceptance of in-vitro meat. To realize any perceivable change in various socio-economic and environmental spheres, the technology should be commercialized and should be cost-effective as conventional meat and widely accepted among consumers. The new challenges of increasing demand of meat with the increasing population could be fulfill by the establishment of in-vitro meat production at large scale and its popularization. The adoption of in-vitro meat production at an industrial scale will lead to self-sufficiency in the developed world.

Quality comparison of retorted Samgyetang made from white semi-broilers, commercial broilers, Korean native chickens, and old laying hens

  • Jeong, Hae Seong;Utama, Dicky Tri;Kim, Juntae;Barido, Farouq Heidar;Lee, Sung Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.139-147
    • /
    • 2020
  • Objective: The aim of this study was to compare the quality characteristics of retorted Samgyetang (Korean ginseng chicken soup) made from white semi-broilers (WSB; Ross×Hyline white, 3 weeks old), commercial broilers (CB; Ross, 4 weeks old), Korean native chickens (KNC; Hanhyup-3-ho, 12 weeks old) and old laying hens (OLH; Hyline white, 72 weeks old) and to explore the possibility of using the carcasses of KNCs and OLHs as raw material for product diversification. Methods: Raw and cooked meat quality, fatty acid composition and consumer acceptance were analyzed. Results: Among the chicken breeds, OLH and KNC showed a higher shear force value than WSB and CB due to high insoluble collagen contents. However, the meat of KNC was more tender than that of OLH. The meat of OLH was characterized by the lowest moisture content and highest crude fat content. The meat of KNC was characterized by a higher proportion of saturated fatty acids, α-linolenic acid and arachidonic acid than that of OLH. The meat of OLH showed the highest content of unsaturated fatty acid, particularly linoleic acid, in its thigh meat. Electronic nose readings revealed that the meat aroma pattern was clearly different across breeds. OLH had the lowest overall acceptance score, while no differences were found in flavor, texture, juiciness and appearance among WSB, CB, and KNC. Conclusion: KNC shows potential as raw material for Samgyetang, while additional preprocessing methods, such as tenderization and fat removal, are required for the utilization of OLH as raw material for retorted Samgyetang.