• Title/Summary/Keyword: angular distribution

Search Result 341, Processing Time 0.025 seconds

Evaluation of Static and Dynamic Characteristics of Coal Ashes (석탄회의 정적 및 동적 특성 평가)

  • Yoon, Yeowon;Chae, Kwangsuk;Song, Kyuhwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.5-12
    • /
    • 2009
  • This study presents static and dynamic strength of coal ashes collected from disposal site of power plant. Main compositions of coal ashes were bottom ashes. In order to evaluate static and dynamic characteristics of coal ash, NGI direct-simple shear tests, cyclic simple shear tests and direct shear tests were conducted. The strengths of coal ashes from those tests were compared to those of sands. Bottom ashes among coal ashes used for this study were classified as sand from the grain size distribution and show higher strength properties than the sands. For utilization of coal ashes in civil engineering project, mixing coal ashes with sandy soil using batch plant is inconvenient and the cost is higher than the spreading sand layer and coal layer alternately. In order to simulate both mixing type and layered type construction, sands and coal ashes were mixed with volume ratio 50:50 and prepared sand and coal ash layers alternately with the same volume ratio. From the tests mixed coal ashes-specimen shows slightly higher static and cyclic strength than the layered specimen at the same density. The higher strength seems due to the angular grain of bottom ashes. The cyclic stress ratio at liquefaction decreases rapidly as the number of cycle increases at mixed specimen than that of layered specimen.

  • PDF

A Basic Study on Crushability of Sands and Characteristics of Particle Strength (모래의 파쇄성과 단입자강도 특성에 관한 기초적 연구)

  • 곽정민
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.193-204
    • /
    • 1999
  • Particle crushing is an important and essential factor in interpreting the strength and deformation properties of granular materials in the case of geotechnical problems related to soil crushability. As a recent field problem, the exploitation of offshore oil reserves in tropical and sub-tropical coastal shelf areas has shown that the behaviour of soils containing carbonates is markedly different from predominantly silica sands. In this study, as a first step in making a mechanical framework of granular materials incorporating the soil crushability, single particle fragmentation tests were carried out on four different types of sands in order to clarify the characteristics of the single particle fragmentation strength as related to soil crushability. The single particle strength was considered with the influence of the particle shapes, the amount of mineral components and the particle sizes. The soil particle strength corresponding $D_{50}$ of soil distribution curve has shown the lower value, the more the carbonate component and the more angular the particle shape.

  • PDF

A Study on ISAR Imaging Algorithm for Radar Target Recognition (표적 구분을 위한 ISAR 영상 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.294-303
    • /
    • 2008
  • ISAR(Inverse Synthetic Aperture Radar) images represent the 2-D(two-dimensional) spatial distribution of RCS (Radar Cross Section) of an object, and they can be applied to the problem of target identification. A traditional approach to ISAR imaging is to use a 2-D IFFT(Inverse Fast Fourier Transform). However, the 2-D IFFT results in low resolution ISAR images especially when the measured frequency bandwidth and angular region are limited. In order to improve the resolution capability of the Fourier transform, various high-resolution spectral estimation approaches have been applied to obtain ISAR images, such as AR(Auto Regressive), MUSIC(Multiple Signal Classification) or Modified MUSIC algorithms. In this study, these high-resolution spectral estimators as well as 2-D IFFT approach are combined with a recently developed ISAR image classification algorithm, and their performances are carefully analyzed and compared in the framework of radar target recognition.

A Study on Angular Correlation between Hallux Valgus and 1st MPJ Dorsi-flexion according to Work Type and Age of Woman (여성의 근무형태와 연령에 따른 무지 외반각도와 제1 중족족지관절 운동한계각도의 상관관계에 대한 연구)

  • Choi, Geun-Hyung;Park, Kwang-Young;Byun, Sang-Joon;Park, Seung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.5
    • /
    • pp.57-63
    • /
    • 2011
  • Purpose: The aim of this research is to determine whether there is a significant correlation between the angle of the hallux valgus and dorsi-flexion of the 1st metatarsophalangeal joint (1st MPJ) as a physical factor that has a significant influence on healthy human walking. Methods: The subjects of this research were 65 female adults (130 feet) and the methods used included recording of real measurements and conducting a questionnaire. The acquired data is analyzed by the 'Simple Pearson Correlation Analysis' and 'Repeated Measures Analysis' methods. Results: The research result shows that the left area of -0.74706 and the right area of -0.76 have a relatively high negative correlation (p<0.00). Also, after conducting the 'Repeated Measures Analysis of Variance' of the angles of the hallux valgus and dorsi-flexion of the 1st metatarsophalangeal joint (1st MPJ), the result also shows that the left and right areas of -0.75 have a relatively high negative correlation. Conclusion: The present study was performed for the identification of a significant correlation between the angle of the hallux valgus and dorsi-flexion of the 1st MPJ. From the results of this study, we confirmed that there is a clear tendency for the average distribution rates of Hallux Valgus and Hallux Rigidus (Hallux Limitus) of women to show a higher increase in proportion to age.

Design and Characteristic Measurement of 8000 mm Large Aperture Integrating Sphere

  • Zhang, Zhao;Wan, Zhi;Li, Xiansheng;Liu, Hongxing;Sun, Jingxu;Liu, Zexun;Wang, Yamin;Ren, Jianwei;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.500-509
    • /
    • 2016
  • Integrating spheres play a central role in the radiometric calibration of remote sensors. With the development of the wide field of view (FOV) remote sensors, aperture diameters of remote sensors are becoming larger and larger. To satisfy the radiometric calibration requirements of full FOV and full aperture, an 8000mm diameter large aperture integrating sphere uniform source with a variable exit port was designed and manufactured. This integrating sphere will be used for pre-launch test and radiometric calibration of remote satellites. In this paper, optical theories were used to design the output spectral radiance. The LightTools software based on ray-tracing simulation method was used to determine the best combination and distribution of inner light sources. A spectral experiment was made to verify the spectral radiance design. To reduce the influence of longtime power-on, a new characteristic measurement method was developed to obtain the radiation characteristic of the integrating sphere, which could greatly improve the measuring efficiency. This method could also be applied to measure other large aperture uniform sources. The obtained results indicate that the spatial uniformity is 98.35%, and the angular uniformity at center position is 98.78%.

Effect of Target Angle and Thickness on the Heel Effect and X-ray Intensity Characteristics for 70 kV X-ray Tube Target

  • Kim, Gyehong;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.272-276
    • /
    • 2016
  • To investigate the optimum x-ray tube design for the dental radiology, factors affecting x-ray beam characteristics such as tungsten target thickness and anode angle were evaluated. Another goal of the study was to addresses the anode heel effect and off-axis spectra for different target angles. MCNPX has been utilized to simulate the diagnostic x-ray tube with the aim of predicting optimum target angle and angular distribution of x-ray intensity around the x-ray target. For simulation of x-ray spectra, MCNPX was run in photon and electron using default values for PHYS:P and PHYS:E cards to enable full electron and photon transport. The x-ray tube consists of an evacuated 1 mm alumina envelope containing a tungsten anode embedded in a copper part. The envelope is encased in lead shield with an opening window. MCNPX simulations were run for x-ray tube potentials of 70 kV. A monoenergetic electron source at the distance of 2 cm from the anode surface was considered. The electron beam diameter was 0.3 mm striking on the focal spot. In this work, the optimum thickness of tungsten target was $3{\mu}m$ for the 70 kV electron potential. To determine the angle with the highest photon intensity per initial electron striking on the target, the x-ray intensity per initial electron was calculated for different tungsten target angles. The optimum anode angle based only on x-ray beam flatness was 35 degree. It should be mentioned that there is a considerable trade-off between anode angle which determines the focal spot size and geometric penumbra. The optimized thickness of a target material was calculated to maximize the x-ray intensity produced from a tungsten target materials for a 70 keV electron energy. Our results also showed that the anode angle has an influencing effect on heel effect and beam intensity across the beam.

Process Parameter Effect on Deformation of a V-groove Thin Plate for FCAW and EGW (V-groove 박판의 FCAW와 EGW 공정에 따른 변형에 미치는 공정인자 영향)

  • Han, Juho;Jeon, Jaeseung;Park, Chulsung;Oh, Chongin;Yun, Jinoh;Lee, Jeongsoo
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.65-70
    • /
    • 2013
  • Finite element analysis and welding experiments were performed to evaluate deformation aspect for Flux Cored Arc Welding(FCAW) and Electro Gas Welding(EGW). Numerical researches of FCAW and EGW were performed considering the difference of number of welding pass and welding direction to arc flow. To perform the numerical study of FCAW and EGW, number of welding pass and welding direction to arc flow were considered in the finite element model. FCAW process requires multi pass and its welding direction is vertical to welding torch. On the other hand, EGW process requires single pass and its welding direction is parallel to welding torch. The difference of welding direction and heat input was considered in the finite element analysis. In FCAW process, Goldak's double ellipsoidal heat input model was adopted. In the EGW process, Hemi-spherical power density distribution was adopted. In the results of experiment and finite element analysis, angular deformation of FCAW process is larger than that of EGW process.

Optical Simulation Study on the Effect of Reflecting Properties of Reflection Films on the Performances of Collimating Films for the LCD Backlight Applications

  • Lee, Jeong-Ho;Ju, Young-Hyun;Park, Ji-Hee;Lee, Ji-Young;Nahm, Kie-Bong;Ko, Jae-Hyeon;Kim, Joong-Hyun
    • Journal of Information Display
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • The dependence of optical performances of collimating films such as prism films and pyramid films on the reflecting properties of reflection films were investigated by using a ray tracing technique. The angular distribution of the luminance and the on-axis luminance gain were obtained by using a simple backlight model composed of a reflection film, a virtual flat light source, and a collimating film. Three kinds of reflecting properties were used, which were a perfect Lambertian reflector, a perfect mirror reflector, and a reflector having both diffuse and specular properties. It was found that the on-axis luminance gain was the highest in the simulation where a mirror reflector was used, while the viewing angle was the widest where the Lambertian reflector was used. This result indicates that it is necessary to optimize the simulation condition such as the reflecting properties in order to predict the optical performances of collimating films accurately. Quantitative correlation between the optical characteristics of collimating films and the reflecting properties of reflection films can be used to improve simulation technique for the development and the optimization of collimating films for LCD backlight applications.

New BLU Sheet with Linear Arrays of Deformed Bar Prism for Direct Back Light Unit (직하형 Back Light Unit에 사용하는 변형 막대프리즘의 1차원 배열로 구성한 새로운 BLU 필름)

  • Jang, Sun-Young;Jo, Jae-Heung;Baek, Seung-Sun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.401-409
    • /
    • 2007
  • A new sheet of back light unit(BLU) to reduce the number of sheets and enhance the optical performances of direct back light unit(BLU) in a liquid crystal display is proposed and designed. In order to improve the straightness and spatial uniformity of brightness of the BLU, we design the new sheet with linear arrays of complicated bar prism by using the fusion of cylindrical lens and bar prism. Then, we investigate and analyze various optical performances of a BLU including the new sheet through an illumination optical system design program. From these results, we determine the optimum geometrical structure of the sheet. Under the optimum condition, the luminance efficiency and spatial uniformity of luminance of the BLU are 53.5% and 83.5% respectively. And the vertical and horizontal widths of the angular luminance distribution are $90^{\circ}$ and $112.5^{\circ}$ respectively. Finally we have fabricated a new BLU sheet according to this design shape by using an ordinary resins.

Universality of the Quasi-linear Relation Between the Order Parameter and the Normalized Birefringence of Aligned Uniaxially Anisotropic Molecules (정렬된 단축이방성 분자들의 질서변수와 상대 복굴절간 준선형 관계식의 보편성)

  • Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • The universality of the quasi-linear relation between the order parameter S and the normalized birefringence ${\Delta}n_{rel}$, $S=(1+a){\Delta}n_{rel}-a{\Delta}n^2_{rel}$ is confirmed. It is verified that the refractive index of liquid crystals distributed with regular polyhedral symmetry is isotropic and it is given as $\frac{1}{n^2_{av}}=\frac{1}{3}\(\frac{1}{n^2_e}+\frac{2}{n^2_o}\){\cdot}S$ and ${\Delta}n_{rel}$ of angular weighted liquid crystals that are initially distributed with regular polyhedral symmetry, are numerically calculated. Also ${\Delta}n_{rel}$ and S of liquid crystals that are conically distributed, keeping the rotational symmetry about z-axis are calculated as the apex angle of the cone is varied. Based on these calculated results, it is confirmed that the quasi-linear relation between S and ${\Delta}n_{rel}$ is universal, independent of the details of the distribution function.