• 제목/요약/키워드: angle-between-string-and-horizon flexibility

검색결과 3건 처리시간 0.014초

Damage detection for beam structures using an angle-between-string-and-horizon flexibility matrix

  • Yan, Guirong;Duan, Zhongdong;Ou, Jinping
    • Structural Engineering and Mechanics
    • /
    • 제36권5호
    • /
    • pp.643-667
    • /
    • 2010
  • The classical flexibility difference method detects damage by observing the difference of conventional deflection flexibility matrices between pre- and post-damaged states of a structure. This method is not able to identify multiple damage scenarios, and its criteria to identify damage depend upon the boundary conditions of structures. The key point behind the inability and dependence is revealed in this study. A more feasible flexibility for damage detection, the Angle-between-String-and-Horizon (ASH) flexibility, is proposed. The physical meaning of the new flexibility is given, and synthesis of the new flexibility matrix by modal frequencies and translational mode shapes is formulated. The damage indicators are extracted from the difference of ASH flexibility matrices between the pre- and post-damaged structures. One feature of the ASH flexibility is that the components in the ASH flexibility matrix are associated with elements instead of Nodes or DOFs. Therefore, the damage indicators based on the ASH flexibility are mapped to structural elements directly, and thus they can pinpoint the damaged elements, which is appealing to damage detection for complex structures. In addition, the change in the ASH flexibility caused by damage is not affected by boundary conditions, which simplifies the criteria to identify damage. Moreover, the proposed method can determine relatively the damage severity. Because the proposed damage indicator of an element mainly reflects the deflection change within the element itself, which significantly reduces the influence of the damage in one element on the damage indicators of other damaged elements, the proposed method can identify multiple damage locations. The viability of the proposed approach has been demonstrated by numerical examples and experimental tests on a cantilever beam and a simply supported beam.

Damage detection on a full-scale highway sign structure with a distributed wireless sensor network

  • Sun, Zhuoxiong;Krishnan, Sriram;Hackmann, Greg;Yan, Guirong;Dyke, Shirley J.;Lu, Chenyang;Irfanoglu, Ayhan
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.223-242
    • /
    • 2015
  • Wireless sensor networks (WSNs) have emerged as a novel solution to many of the challenges of structural health monitoring (SHM) in civil engineering structures. While research projects using WSNs are ongoing worldwide, implementations of WSNs on full-scale structures are limited. In this study, a WSN is deployed on a full-scale 17.3m-long, 11-bay highway sign support structure to investigate the ability to use vibration response data to detect damage induced in the structure. A multi-level damage detection strategy is employed for this structure: the Angle-between-String-and-Horizon (ASH) flexibility-based algorithm as the Level I and the Axial Strain (AS) flexibility-based algorithm as the Level II. For the proposed multi-level damage detection strategy, a coarse resolution Level I damage detection will be conducted first to detect the damaged region(s). Subsequently, a fine resolution Level II damage detection will be conducted in the damaged region(s) to locate the damaged element(s). Several damage cases are created on the full-scale highway sign support structure to validate the multi-level detection strategy. The multi-level damage detection strategy is shown to be successful in detecting damage in the structure in these cases.

Experimental validation of a multi-level damage localization technique with distributed computation

  • Yan, Guirong;Guo, Weijun;Dyke, Shirley J.;Hackmann, Gregory;Lu, Chenyang
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.561-578
    • /
    • 2010
  • This study proposes a multi-level damage localization strategy to achieve an effective damage detection system for civil infrastructure systems based on wireless sensors. The proposed system is designed for use of distributed computation in a wireless sensor network (WSN). Modal identification is achieved using the frequency-domain decomposition (FDD) method and the peak-picking technique. The ASH (angle-between-string-and-horizon) and AS (axial strain) flexibility-based methods are employed for identifying and localizing damage. Fundamentally, the multi-level damage localization strategy does not activate all of the sensor nodes in the network at once. Instead, relatively few sensors are used to perform coarse-grained damage localization; if damage is detected, only those sensors in the potentially damaged regions are incrementally added to the network to perform finer-grained damage localization. In this way, many nodes are able to remain asleep for part or all of the multi-level interrogations, and thus the total energy cost is reduced considerably. In addition, a novel distributed computing strategy is also proposed to reduce the energy consumed in a sensor node, which distributes modal identification and damage detection tasks across a WSN and only allows small amount of useful intermediate results to be transmitted wirelessly. Computations are first performed on each leaf node independently, and the aggregated information is transmitted to one cluster head in each cluster. A second stage of computations are performed on each cluster head, and the identified operational deflection shapes and natural frequencies are transmitted to the base station of the WSN. The damage indicators are extracted at the base station. The proposed strategy yields a WSN-based SHM system which can effectively and automatically identify and localize damage, and is efficient in energy usage. The proposed strategy is validated using two illustrative numerical simulations and experimental validation is performed using a cantilevered beam.