• 제목/요약/키워드: angle of shear key

검색결과 51건 처리시간 0.019초

Simulation of turbulent flow of turbine passage with uniform rotating velocity of guide vane

  • Wang, Wen-Quan;Yan, Yan
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.421-440
    • /
    • 2018
  • In this study, a computational method for wall shear stress combined with an implicit direct-forcing immersed boundary method is presented. Near the immersed boundaries, the sub-grid stress is determined by a wall model in which the wall shear stress is directly calculated from the Lagrangian force on the immersed boundary. A coupling mathematical model of the transition process for a model Francis turbine comprising turbulent flow and rotating rigid guide vanes is established. The spatiotemporal distributions of pressure, velocity, vorticity and turbulent quantity are gained with the transient process; the drag and lift coefficients as well as other forces (moments) are also obtained as functions of the attack angle. At the same time, analysis is conducted of the characteristics of pressure pulsation, velocity stripes and vortex structure at some key parts of flowing passage. The coupling relations among the turbulent flow, the dynamical force (moment) response of blade and the rotating of guide vane are also obtained.

Wind tunnel study on fluctuating internal pressure of open building induced by tangential flow

  • Chen, Sheng;Huang, Peng;Flay, Richard G.J.
    • Wind and Structures
    • /
    • 제32권2호
    • /
    • pp.105-114
    • /
    • 2021
  • This paper describes a wind tunnel test on a 1:25 scale model of TTU building with several adjustable openings in order to comprehensively study the characteristics of fluctuating internal pressures, especially the phenomenon of the increase in fluctuating internal pressures induced by tangential flow over building openings and the mechanism causing that. The effects of several factors, such as wind angle, turbulence intensity, opening location, opening size, opening shape and background porosity on the fluctuating internal pressures at oblique wind angles are also described. It has been found that there is a large increase in the fluctuating internal pressures at certain oblique wind angles (typically around 60° to 80°). These fluctuations are greater than those produced by the flow normal to the opening when the turbulence intensity is low. It is demonstrated that the internal pressure resonances induced by the external pressure fluctuations emanating from flapping shear layers on the sidewall downstream of the windward corner are responsible for the increase in the fluctuating internal pressures. Furthermore, the test results show that apart from the opening shape, all the other factors influence the fluctuating internal pressures and the internal pressure resonances at oblique wind angles to varying degrees.

가공송전철탑 경량화 설계에 관한 연구 (A Study of the Slim Design of Overhead Transmission Tower)

  • 이정원;이원교
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.560-565
    • /
    • 2010
  • This paper presents the design factor of an overhead transmission tower structure in order to reduce the tower weight. The behaviour of transmission tower structures are affected by the horizontal angle of the tower structure, the equivalent wind pressure group, the slope of the main post of the tower, the separation of the internode and the use of high-strength materials in their construction. Tower weight can be reduced by approximately 30% reduce weight by means of optimal design based on a consideration of all the above factors. In addition, the design of the foundation of the tower with the shear key installation to increase horizontal support together with a modified angle of inclination to the ground can reduce by about 37% the amount of concrete used during construction. The area of ground disturbed by the construction of the tower foundation can thus be reduced by approximately 33%. Therefore it is possible to build an environmently-friendly T/L tower with the mechanical properties of existing towers.

2축 스크류 니더의 설계에서 스크류 로터 팁의 각도가 믹싱성능에 미치는 영향 (Influence of Screw Rotors Tip Angle on Mixing Performance for One Novel Twin-screw Kneader)

  • Wei, Jing;Chen, Dabing;Zhou, Dongming;Zhang, Aiqiang;Yang, Yuliang
    • 폴리머
    • /
    • 제39권3호
    • /
    • pp.441-452
    • /
    • 2015
  • Twin-screw kneader is an efficient polymer processing equipment. In this paper, the mixing performance of one novel intermeshing counter-rotating twin-screw kneader with different tip angles of the male rotor is simulated using the mesh superimposition technique (MST). Statistical analysis is carried out for the flow field using particle tracking technique, and distributive mixing performance is evaluated using the residence time distribution and segregation scale, while the dispersive mixing performance is estimated using the parameters such as shear rate, stretching rate and mixing index. The results show that the best distributive mixing performance is achieved when the tip angle is 0o, while the optimal dispersive mixing performance is obtained when the tip angle is 20o. The results in this paper provide a data basis for the selection of parameters and optimization of the performance for the screw rotors.

Incompatible deformation and damage evolution of mixed strata specimens containing a circular hole

  • Yang, Shuo;Li, Yuanhai;Chen, Miao;Liu, Jinshan
    • Geomechanics and Engineering
    • /
    • 제20권5호
    • /
    • pp.461-474
    • /
    • 2020
  • Analysing the incompatible deformation and damage evolution around the tunnels in mixed strata is significant for evaluating the tunnel stability, as well as the interaction between the support system and the surrounding rock mass. To investigate this issue, confined compression tests were conducted on upper-soft and lower-hard strata specimens containing a circular hole using a rock testing system, the physical mechanical properties were then investigated. Then, the incompatible deformation and failure modes of the specimens were analysed based on the digital speckle correlation method (DSCM) and Acoustic Emission (AE) data. Finally, numerical simulations were conducted to explore the damage evolution of the mixed strata. The results indicate that at low inclination angles, the deformation and v-shaped notches inside the hole are controlled by the structure plane. Progressive spalling failure occurs at the sidewalls along the structure plane in soft rock. But the transmission of the loading force between the soft rock and hard rock are different in local. At high inclination angles, v-shaped notches are approximately perpendicular to the structure plane, and the soft and hard rock bear common loads. Incompatible deformation between the soft rock and hard rock controls the failure process. At inclination angles of 0°, 30° and 90°, incompatible deformations are closely related to rock damage. At 60°, incompatible deformations and rock damage are discordant due that the soft rock and hard rock alternately bears the major loads during the failure process. The failure trend and modes of the numerical results agree very well with those observed in the experimental results. As the inclination angles increase, the proportion of the shear or tensile damage exhibits a nonlinear increase or decrease, suggesting that the inclination angle of mixed strata may promote shear damage and restrain tensile damage.

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

PFC를 이용한 입자 파쇄 모델의 적용성 연구 (Applicability of Particle Crushing Model by Using PFC)

  • 정선아;김은경;이석원
    • 한국지반신소재학회논문집
    • /
    • 제9권1호
    • /
    • pp.47-57
    • /
    • 2010
  • 기초 지반이나 댐, 사면 등을 건설할 경우, 성토재로 입자 크기가 큰 조립 재료를 많이 사용하고 있다. 따라서 이러한 조립재료의 전단 거동은 구조물의 안정성에 영향을 미치게 된다. 예를 들어, 구조물과 입자의 접촉면 혹은 입자들간의 접촉면에서 발생하는 입자 파쇄는 전체 지반의 특성을 변화시키고 따라서 구조물의 안정성에 문제를 유발할 수 있다. 본 연구에서는 입자의 파쇄 유무에 따른 전단 거동의 특성을 파악하기 위해 개별요소법(DEM, Distinct Element Model)을 기반으로 하는 수치해석 프로그램 PFC2D를 이용하여 직접전단실험을 재현하였다. 입자의 모델을 파쇄 모델과 비 파쇄 모델로 구분하여 총 4개의 모델을 모사하고 그 결과를 분석하였다. 비 파쇄 모델에는 one ball 모델과 clump 모델이, 파쇄 모델에는 cluster 모델과 Lobo-crushing 모델을 적용하였다. 입자의 구성은 Lobo-Guerrero and Vallejo(2005)가 제안한 8개 입자의 조합으로 구성하였다. 해석 결과, 내부마찰각 순서는 clump 모델 > cluster 모델 > one ball 모델 순이며, 전체를 비교해 봤을 때 원형입자모델보다 입자 결합모델이, 파쇄 모델보다 비 파쇄 모델의 내부마찰각이 크게 나타났다. 또한 기존에 제시된 Lobo-Guerrero and Vallejo(2005)의 모델은 입자 파쇄 거동을 모사하기에는 부적합하다는 결론을 얻을 수 있었다.

  • PDF

격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구 (Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint)

  • 신현섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권4호
    • /
    • pp.10-21
    • /
    • 2014
  • 프리캐스트 방식에 의해 제작이 가능한 격자형 강합성 바닥판의 이음부는 콘크리트 전단키와 고장력볼트 체결로 구성될 수 있으며, 이와같은 이음부 자체에 대한 휨 및 전단성능은 부재요소에 대한 실험을 통해 분석된 바 있다. 본 연구에서는 실제 바닥판 구조시스템에서 이음부에 의한 횡방향 하중전달 거동을 분석하고자, 길이 2.5m 및 폭 1m의 단위 바닥판 모듈 한쌍에 이음부를 설치한 실험체를 제작하고 중심 및 편심가력 휨실험을 하였다. 이음부에 하중이 직접 가해지는 중심재하 조건에서 고장력볼트의 설치개수가 30cm 간격 9개에서 60cm 간격 4개로 줄어 들 경우, 재하단계에 따라 이음부의 회전이 비교적 더 크게 증가하고, 이에 따라 바닥판 횡방향으로의 하중전달 정도가 감소함을 알 수 있었다. 그러나, 한쪽 바닥판의 중심에 집중하중이 가해지는 편심재하 조건의 경우에는 횡방향 하중전달 거동에 큰 차이가 없었다. 하중 재하방법별로 이음부의 거동을 비교한 결과, 집중하중에 대한 바닥판 횡방향으로의 하중분배 및 전달량은 이음부 자체의 성능뿐만 아니라 바닥판 슬래브의 펀칭전단에 의해서도 제한되는 것으로 분석되었다. 또한, 펀칭 전단파괴가 발생할 때까지 이음부의 고장력볼트가 항복하지 않은 점을 고려할 때, 이음부 고장력볼트의 설치개수를 4개에서 9개로 증가시키는 것은 실질적으로 강도 보다는 이음부 및 바닥판의 휨강성 성능 증가에 더 큰 영향을 미치는 것으로 사료된다.

펀치형상이 팽창튜브의 파단불안전성에 미치는 영향 (Effect of Punch Shapes on Failure Instability of Expansion Tube)

  • 최원목;권태수;정현승;김진성
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.125-132
    • /
    • 2011
  • The rupture of an expansion tube is mainly affected by the expansion ratio and the external shape of the punch used to expand the tube. In order to prevent the tube from rupture, the effect of the external shape of the punch should be considered in the design. The aim of this paper is to confirm the effect of key design parameters of the punch on rupture of the tube using a finite element analysis with a ductile damage model. The results of the analysis indicated that the expansion ratio of the tube was mainly affected by variation of the radius of the punch. However, the rupture was more affected by variation of the punch angle than the radius of the punch. The existence of a specific punch angle at which rupture did not occur, even if the radius of the punch was increased, was found from the results.

Mechanism of strength damage of red clay roadbed by acid rain

  • Guiyuan Xiao;Jian Wang;Le Yin;Guangli Xu;Wei Liu
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.473-480
    • /
    • 2023
  • Acid rain of soils has a significant impact on mechanical properties. An X-ray diffraction test, scanning electron microscope (SEM) test, laser particle size analysis test, and triaxial unconsolidated undrained (UU) test were carried out in red clay soils with different compaction degrees under the effect of different concentrations of acid. The experiments demonstrated that: the dissolution effect of acid rain on colluvium weakened with the increase in the compacting degree under the condition of certain pH values, i.e., the damage to the structure of red clay soil was relatively light, where the number of newly increased pores in the soil decreased and the agglomeration of soil particles increased; for the same compacting degree, the structural gap decreased, and the agglomeration increased with the increase in the pH value (acidity decreases) of the acid rain; the dissolution rate of Si, Al, Fe, and other elemental minerals and cement in red clay soil was found to be higher under the effect of acid rain, in turn destroying the original structure of the soil body and producing a large number of pores. This is macroscopically expressed as the decrease of the soil cohesion and internal friction angle, thereby reducing the shear strength of the soil body.