• Title/Summary/Keyword: angle of arrival method

Search Result 98, Processing Time 0.026 seconds

Intelligent Ship s Steering Gear Control System Using Linguistic Instruction (언어지시에 의한 지능형 조타기 제어 시스템)

  • 박계각;서기열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.93-97
    • /
    • 2002
  • In this paper, we propose intelligent steering control system that apply LIBL(Linguistic Instruction Based Learning) method to steering system of ship and take the place of process that linguistic instruction such as officer's steering instruction is achieved via ableman. We embody ableman's suitable steering manufacturing model using fuzzy inference rule by specific method of study, and apply LIBL method to present suitable meaning element and evaluation rule to steering system of ship, embody intelligent steering gear control system that respond more efficiently on officer's linguistic instruction. We presented evaluation rule to constructed steering manufacturing model based on ableman's experience, and propose rudder angle for steering system, compass bearing arrival time, meaning element of stationary state, and correct ableman manufacturing model rule using fuzzy inference. Also, we apply LIBL method to ship control simulator and confirmed the effectiveness.

Signal-Subspace-Based Simple Adaptive Array and Performance Analysis (신호 부공간에 기초한 간단한 적응 어레이 및 성능분석)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • Adaptive arrays reject interferences while preserving the desired signal, exploiting a priori information on its arrival angle. Subspace-based adaptive arrays, which adjust their weight vectors in the signal subspace, have the advantages of fast convergence and robustness to steering vector errors, as compared with the ones in the full dimensional space. However, the complexity of theses subspace-based methods is high because the eigendecomposition of the covariance matrix is required. In this paper, we present a simple subspace-based method based on the PASTd (projection approximation subspace tracking with deflation). The orignal PASTd algorithm is modified such that eigenvectora are orthogonal to each other. The proposed method allows us to significantly reduce the computational complexity, substantially having the same performance as the beamformer with the direct eigendecomposition. In addition to the simple beamforming method, we present theoretical analyses on the SINR (signal-to-interference plus noise ratio) of subspace beamformers to see their behaviors.

Real Time AOA Estimation Using Analog Neural Network Model (아날로그 신경망 모델을 이용한 실시간 도래방향 추정 알고리즘의 개발)

  • Jeong, Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.465-469
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas, However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. the other problem of MUSIC and ESPRIT is to require calibrated antennas with uniform features, and are sensitive ti the manufacturing fault and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those methods require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected Hopfield neural model. Computer simulations show the validity of the proposed algorithm. It follows that the proposed method yields better AOA estimates than MUSIC. Moreover, out method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.

Optimal Earth-Moon Trajectory Design using Constant and Variable Low Thrust (등저추력과 가변저추력을 이용한 지구-달 천이궤적 설계)

  • Song, Young-Joo;Park, Sang-Young;Choi, Kyu-Hong;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.843-854
    • /
    • 2009
  • For preparing Korean lunar missions, optimal Earth-Moon transfer trajectory is designed using continuous low thrust. Using both constant and variable low thrusting method, "End-to-End" mission analysis is made from beginning of the Earth departure to the final lunar arrival. Spacecraft's equations of motion is expressed using N-body dynamics including the gravitational effects due to the Earth, Moon, Sun and also with Earth's $J_2$ effects. Planets' exact locations are computed accurately with JPL's DE405 ephemeris. As a results, optimal thrust steering angle's characteristics are discovered which showed almost tangential direction burns at the near of central planets. Also, it is confirmed that variable low thrusting method is more efficient than constant thrusting method, and can save about 5% of fuel consumption. Presented algorithm and various results will give numerous insights into the future Korea's Lunar missions using low thrust engines. Also, it is expected to be used as a basis of more detailed mission analyzing tool.

An analysis of port-starboard discrimination performance for roll compensation at acoustic vector sensor arrays (음향 벡터 센서 배열의 뒤틀림 보상을 통한 좌현-우현 구분 성능분석)

  • Lee, Ho Jin;Ryu, Chang-Soo;Bae, Eun Hyon;Lee, Kyun Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.403-409
    • /
    • 2016
  • Traditional towed line arrays using omni-directional sensor suffer from the well known port-starboard ambiguity, because the direction of arrival is determined by conic angle. The operational method and structure of the sensor arrays method have been proposed to solve this problem. Recently, a lot of research relating to the acoustic vector sensor are studied. In this paper, we study port-starboard discrimination for roll of acoustic vector sensor array. With one omni-directional sensor and three orthogonally-placed directional sensors, an acoustic vector sensor is able to measure both the acoustic pressure and the three directional velocities at the point of the sensor. The wrong axis due to the roll at directional sensors can degrade performance of beamforming. We investigate port-starboard discrimination for roll of sensor array and confirm the validity of performance of beamforming with compensated the roll.

Convergence Decision Method Using Eigenvectors of QR Iteration (QR 반복법의 고유벡터를 이용한 수렴 판단 방법)

  • Kim, Daehyun;Lee, Jingu;Jeong, Seonghee;Lee, Jaeeun;Kim, Younglok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.868-876
    • /
    • 2016
  • MUSIC (multiple signal classification) algorithm is a representative algorithm estimating the angle of arrival using the eigenvalues and eigenvectors. Generally, the eigenvalues and eigenvectors are obtained through the eigen-analysis, but this analysis requires high computational complexity and late convergence time. For this reason, it is almost impossible to construct the real-time system with low-cost using this approach. Even though QR iteration is considered as the eigen-analysis approach to improve these problems, this is inappropriate to apply to the MUSIC algorithm. In this paper, we analyze the problems of conventional method based on the eigenvalues for convergence decision and propose the improved decision algorithm using the eigenvectors.

Real Time AOA Estimation Using Neural Network combined with Array Antennas (어레이 안테나와 결합된 신경망모델에 의한 실시간 도래방향 추정 알고리즘에 관한 연구)

  • 정중식;임정빈;안영섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.87-91
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas. However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. The other problem of MUSIC and ESRPIT is to require calibrated antennas with uniform features, and are sensitive to the manufacturing facult and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected hopfield neural model. Computer simulations show the validity of the proposed algorithm. The proposed method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.

  • PDF

Seismic Studies on Ground Motion using the Multicomponent Complex Trace Analysis Method (다성분 복소 트레이스 분석법을 이용한 지진파 입자운동 연구)

  • Lee, So-Young;Kim, Ki-Young;Kim, Han-Joon
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.37-48
    • /
    • 2000
  • In order to investigate in-line ground motions caused by earthquakes, we examine the multicomponent complex trace analysis method (MCTAM) for the synthetic data and apply it to real earthquake data. An experimental result for synthetic data gives correct information on the arrival times, duration of individual phases, and approaching angles for body waves. Rayleigh waves are also easily identified with the MCTAM. A deep earthquake with magnitude of 7.3 was chosen to test various polarization attributes of ground motions. For P waves, instantaneous phase difference between the vertical and the in-line horizontal components ${\phi}(t)$, instantaneous reciprocal ellipticity ${\rho}(t)$, and approaching angle ${\tau}(t)$ are computed to be ${\pm}180^{\circ},\;0{\sim}0.25,\;and\;-30^{\circ}{\sim}-45^{\circ}$, respectively. For S waves, ${\phi}(t)$ tends to vary while ${\rho}(t)$ have values of $0{\sim}0.3\;and\;{\tau}(t)$ remains near vertical, respectively. A relatively low frequency signal registered just prior to the S wave event is interpreted as a P-wave phase based on its polarization characteristics. Velocities of P and S waves are computed to be 8.633 km/s and 4.762 km/s, and their raypath parameters 0.074 s/km and 0.197 s/km. Dynamic Poisson's ratio is obtained as 0.281 from the velocities of P and S waves.

  • PDF

A Study on the Design of Digital Frequency Discriminator with 3-Channel Delay Lines (3채널 지연선을 가진 디지털주파수판별기의 설계에 관한 연구)

  • Kim, Seung-Woo;Choi, Jae-In;Chin, Hui-cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.44-52
    • /
    • 2017
  • In this paper, we propose a DFD (Digital Frequency Discriminator) design that has better frequency discrimination and a smaller size. Electronic warfare equipment can analyze different types of radar signal such as those based on Frequency, Pulse Width, Time Of Arrival, Pulse Amplitude, Angle Of Arrival and Modulation On Pulse. In order for electronic warfare equipment to analyze radar signals with a narrow pulse width (less than 100ns), they need to have a special receiver structure called IFM (Instantaneous Frequency Measurement). The DFD (Digital Frequency Discriminator) is usually used for the IFM. Because the existing DFDs are composed of separate circuit devices, they are bulky, heavy, and expensive. To remedy these shortcomings, we use a three delay line ($1{\lambda}$, $4{\lambda}$, $16{\lambda}$) in the DFD, instead of the four delay line ($1{\lambda}$, $4{\lambda}$, $16{\lambda}$, $64{\lambda}$) generally used in the existing DFDs, and apply the microwave integrated circuit method. To enhance the frequency discrimination, we detect the pulse amplitude and perform temperature correction. The proposed DFD has a frequency discrimination error of less than 1.5MHz, affording it better performance than imported DFDs.

Signal Processing Algorithm to Reduce RWR Electro-Magnetic Interference with Tail Rotor Blade of Helicopter

  • Im, Hyo-Bin;Go, Eun-Kyoung;Jeong, Un-Seob;Lyu, Si-Chan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • In the environment where various and complicated threat signals exist, RWR (Radar Warning Receiver), which can warn pilot of the existence of threats, has long been a necessary electronic warfare (EW) system to improve survivability of aircraft. The angle of arrival (AOA) information, the most reliable sorting parameter in the RWR, is measured by means of four-quadrant amplitude comparison direction finding (DF) technique. Each of four antennas (usually spiral antenna) of DF unit covers one of four quadrant zones, with 90 degrees apart with nearby antenna. According to the location of antenna installed in helicopter, RWR is subject to signal loss and interference by helicopter body and structures including tail bumper, rotor blade, and so on, causing a difficulty of detecting hostile emitters. In this paper, the performance degradation caused by signal interference by tail rotor blades has been estimated by measuring amplitude video signals into which RWR converts RF signals in case a part of antenna is screened by real tail rotor blade in anechoic chamber. The results show that corruption of pulse amplitude (PA) is main cause of DF error. We have proposed two algorithms for resolving the interference by tail rotor blades as below: First, expand the AOA group range for pulse grouping at the first signal analysis phase. Second, merge each of pulse trains with the other, that signal parameter except PRI and AOA is similar, after the first signal analysis phase. The presented method makes it possible to use RWR by reducing interference caused by blade screening in case antenna is screened by tail rotor blades.