• Title/Summary/Keyword: angiogenesis vascular endothelial growth factor (VEGF)

Search Result 206, Processing Time 0.024 seconds

LKB1/STK11 Tumor Suppressor Reduces Angiogenesis by Directly Interacting with VEGFR2 in Tumorigenesis

  • Seung Bae Rho;Hyun Jung Byun;Boh-Ram Kim;Chang Hoon Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.456-465
    • /
    • 2023
  • Cervical tumors represent a prevalent form of cancer affecting women worldwide; current treatment options involve surgery, radiotherapy, and chemotherapy. Angiogenesis, the process of new blood vessel formation, is a crucial factor in cervical tumor growth. The molecular mechanisms underlying the effects of the liver kinase B1 (LKB1/STK11) tumor suppressor protein on tumor angiogenesis have not been elucidated. Therefore, we investigated the role of LKB1 in cervical tumor angiogenesis both in vitro and in vivo in this study. Our results demonstrated that LKB1 inhibited cervical tumor angiogenesis by suppressing the expression of angiogenesis-related factors such as vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1α. LKB1 directly affected both carcinoma and vascular endothelial cells, resulting in a significant reduction in tumor growth and angiogenesis. Furthermore, LKB1 was found to bind to VEGF receptor 2 (VEGFR-2) and target the VEGFR-2-mediated protein kinase B/mechanistic target of rapamycin signaling pathway in endothelial cells, thereby reducing cervical tumor growth and angiogenesis. Our study provides new insights into the molecular mechanisms underlying the anti-tumor and anti-angiogenic effects of LKB1 in cervical cancer. These findings will help develop new therapeutic strategies for cervical cancer.

The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis

  • You, Weon-Kyoo;McDonald, Donald M.
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.833-839
    • /
    • 2008
  • Angiogenesis in tumors is driven by multiple growth factors that activate receptor tyrosine kinases. An important driving force of angiogenesis in solid tumors is signaling through vascular endothelial growth factor (VEGF) and its receptors (VEGFRs). Angiogenesis inhibitors that target this signaling pathway are now in widespread use for the treatment of cancer. However, when used alone, inhibitors of VEGF/VEGFR signaling do not destroy all blood vessels in tumors and do not slow the growth of most human cancers. VEGF/VEGFR signaling inhibitors are, therefore, used in combination with chemotherapeutic agents or radiation therapy. Additional targets for inhibiting angiogenesis would be useful for more efficacious treatment of cancer. One promising target is the signaling pathway of hepatocyte growth factor (HGF) and its receptor (HGFR, also known as c-Met), which plays important roles in angiogenesis and tumor growth. Inhibitors of this signaling pathway have been shown to inhibit angiogenesis in multiple in vitro and in vivo models. The HGF/c-Met signaling pathway is now recognized as a promising target in cancer by inhibiting angiogenesis, tumor growth, invasion, and metastasis.

Two-Cell Spheroid Angiogenesis Assay System Using Both Endothelial Colony Forming Cells and Mesenchymal Stem Cells

  • Shah, Sajita;Kang, Kyu-Tae
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.474-480
    • /
    • 2018
  • Most angiogenesis assays are performed using endothelial cells. However, blood vessels are composed of two cell types: endothelial cells and pericytes. Thus, co-culture of two vascular cells should be employed to evaluate angiogenic properties. Here, we developed an in vitro 3-dimensional angiogenesis assay system using spheroids formed by two human vascular precursors: endothelial colony forming cells (ECFCs) and mesenchymal stem cells (MSCs). ECFCs, MSCs, or ECFCs+MSCs were cultured to form spheroids. Sprout formation from each spheroid was observed for 24 h by real-time cell recorder. Sprout number and length were higher in ECFC+MSC spheroids than ECFC-only spheroids. No sprouts were observed in MSC-only spheroids. Sprout formation by ECFC spheroids was increased by treatment with vascular endothelial growth factor (VEGF) or combination of VEGF and fibroblast growth factor-2 (FGF-2). Interestingly, there was no further increase in sprout formation by ECFC+MSC spheroids in response to VEGF or VEGF+FGF-2, suggesting that MSCs stimulate sprout formation by ECFCs. Immuno-fluorescent labeling technique revealed that MSCs surrounded ECFC-mediated sprout structures. We tested vatalanib, VEGF inhibitor, using ECFC and ECFC+MSC spheroids. Vatalanib significantly inhibited sprout formation in both spheroids. Of note, the $IC_{50}$ of vatalanib in ECFC+MSC spheroids at 24 h was $4.0{\pm}0.40{\mu}M$, which are more correlated with the data of previous animal studies when compared with ECFC spheroids ($0.2{\pm}0.03{\mu}M$). These results suggest that ECFC+MSC spheroids generate physiologically relevant sprout structures composed of two types of vascular cells, and will be an effective pre-clinical in vitro assay model to evaluate pro- or anti-angiogenic property.

Angiogenic Induction by Trichinella spiralis Infection through Thymosin β4 (티모신베타4에의한 선모충(Trichinella spiralis) 감염의 혈관신생 유도 기작)

  • Ock, Mee Sun;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.23 no.9
    • /
    • pp.1177-1182
    • /
    • 2013
  • Trichinella spiralis (T. spiralis) has been reported to induce angiogenesis and a supply of nutrients and to act as a reliable waste disposal system by induction of the expression of the angiogenic molecule vascular endothelial cell growth factor (VEGF) during nurse cell formation. However, the mechanism underlying the induction of VEGF in nurse cells by T. spiralis has not yet been defined. Some research has pointed to the possibility of hypoxia in nurse cells, but whether hypoxia occurs in infected muscle or nurse cells has not been studied. It is also a matter of debate whether hypoxia induces the expression of VEGF and subsequent angiogenesis in infected muscle. Recent studies showed that thymosin ${\beta}4$, a potent VEGF-inducing protein, was expressed at a very early stage of muscle infection by T. spiralis, suggesting that VEGF is induced at an early stage in nurse cells. Furthermore, hypoxia was not detected in any nurse cell stage but was detected in inflammatory cells. The findings suggest that induction of angiogenesis by VEGF in T. spiralis-infected nurse cells is mediated by thymosin ${\beta}4$ and unrelated to hypoxia.

Sphingosine 1-phosphate induces vesicular endothelial growth factor expression in endothelial cells

  • Heo, Kyun;Park, Kyung-A;Kim, Yun-Hee;Kim, Sun-Hee;Oh, Yong-Seok;Kim, In-Hoo;Ryu, Sung-Ho;Suh, Pann-Ghill
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.685-690
    • /
    • 2009
  • Angiogenesis is essential for tumor growth and vascular endothelial cell growth factor (VEGF) plays a key role in this process. Conversely, sphingosine 1-phosphate (S1P) is a biologically active sphingolipid known to play a key role in cancer progression by regulating endothelial cell proliferation and migration. In this study, the authors found that S1P increases the level of VEGF mRNA in human umbilical vein endothelial cells (HUVECs) and immortalized HUVECs (iHUVECs). Additionally, S1P was found to increase VEGF promoter activity in MS-1 mouse pancreatic islet endothelial cells. Furthermore, a pharmacological inhibitory study revealed that $G_{\alpha i/o}$-mediated phospholipase C, Akt, Erk, and p38 MAPK signaling are involved in this S1P-induced expression of VEGF. A component of AP1 transcription factor is important for S1P-induced VEGF expression. Taken together, these findings suggest that S1P enhances endothelial cell proliferation and migrat ion by upregulating the expression of VEGF mRNA.

The Molecular Insight into the Vascular Endothelial Growth Factor in Cancer: Angiogenesis and Metastasis (암의 혈관내피 성장인자에 대한 분자적 통찰: 혈관신생과 전이)

  • Han Na Lee;Chae Eun Seo;Mi Suk Jeong;Se Bok Jang
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.128-137
    • /
    • 2024
  • This review discusses the pivotal role of vascular endothelial growth factors (VEGF) in angiogenesis and lymphangiogenesis, vital processes influencing vascular permeability, endothelial cell recruitment, and the maintenance of tumor-associated blood and lymphatic vessels. VEGF exerts its effects through tyrosine-kinase receptors, VEGFR-1, VEGFR-2, and VEGFR-3. This VEGF-VEGFR system is central not only to cancer but also to diseases arising from abnormal blood vessel and lymphatic vessel formation. In the context of cancer, VEGF and its receptors are essential for the development of tumor-associated vessels, making them attractive targets for therapeutic intervention. Various approaches, such as anti-VEGF antibodies, receptor antagonists, and VEGF receptor function inhibitors, are being explored to interfere with tumor growth. However, the clinical efficacy of anti-angiogenic agents remains uncertain and necessitates further refinement. The article also highlights the physiological role of VEGFs, emphasizing their involvement in endothelial cell functions, survival, and vascular permeability. The identification of five distinct VEGFs in humans (VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PLGF) is discussed, along with the classification of VEGFRs as typical receptor tyrosine kinases with distinct signaling systems. The family includes VEGFR-1 and VEGFR-2, crucial in tumor biology and angiogenesis, and VEGFR-3, specifically involved in lymphangiogenesis. Overall, this review has provided a comprehensive overview of VEGF and VEGFR, detailing their roles in various diseases, including cancer. This is expected to further facilitate the utilization of VEGF and VEGFR as therapeutic targets.

Expression of Vascular Endothelial Growth Factor Correlated with Recurrence in Gastric Carcinomas (위암의 재발양상에 따른 혈관내피성장인자의 발현)

  • Sung Gi Young;Park Il Young;Lee Do Sang;Kim Wook;Baek Jong Min;Shin Dong Jun;Won Jong Man;Lee Jai Hak
    • Journal of Gastric Cancer
    • /
    • v.2 no.4
    • /
    • pp.195-199
    • /
    • 2002
  • Purpose: Angiogenesis is essential for tumor growth and metastasis and depends on the production of angiogenic factors that are secreted by tumor cells. Vascular endothelial growth factor (VEGF) is the most significant angiogenic factor and a selective mitogen for endothelial cells. VEGF, also known as the vascular permeability factor, acts on endothelial cells to increase microvascular permeability and directly stimulate the growth of new blood vessels. Several studies have reported that the expression of VEGF is correlated with hematogenous recurrence via angiogenesis in gastric carcinomas. This research evaluated the relationship between the expression of VEGF and hepatic and peritoneal recurrence in gastric carcinomas. Materials and Methods: Thirty specimens resected from patients with primary gastric carcinomas who had undergone curative resections were divided into three group: Group I, early gastric carcinomas without recurrence; Group II, advanced gastric carcinomas with hepatic recurrence; and Group III, advanced gastric carcinomas with peritoneal recurrence. The expression of VEGF and the density of the microvessel count were examined using immunohistochemistry. Results: 1) The expression of VEGF in Group II and Group III ($63.2\pm\24.3\%$) was stronger than that in Group I ($7\pm\4.2\%$). The expression of VEGF in Group II ($76.5\pm\13.2\%$) was stronger than that of the Group III ($50\pm\14.2\%$) (P<0.05). 2) The microvessel count in Group II ($49.9\pm14.5$) was more than that in Group I ($8.6\pm2.6$) and Group III ($29.1\pm18.1$) (P<0.05). 3) The microvessel count was increased significantly with increasing the expression of VEGF. Conclusions: The expression of VEGF is associated with advanced stomach cancer and hepatic recurrence has a higher expression of VEGF than peritoneal recurrence with neovascularization. Thus the expression of VEGF can be considered to be a useful indicator of recurrence in gastric carcinoma and especially in hepatic recurrence.

  • PDF

The Effect of Acitretin to the Expression of Vascular Endothelial Growth Factor in Psoriasis (건선(psoriasis)에서 혈관내피 성장인자(VEGF)에 대한 acitretin의 효과)

  • Kim, Chi-Yeon;Kim, Seong-Min;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.327-333
    • /
    • 2009
  • Psoriasis is a well known disorder of keratinization. In this disease, several reports revealed that dermal micro vessels are increased and angiogenic factors such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are over-expressed. Angiogenesis may play an important role in the progression of psoriasis. Acitretin is widely used as an anti-psoriatic drug because of its potent action on keratinocyte growth and differentiation, but its effects on angiogenesis are uncertain. The goal of this immunohistochemical study was to investigate the effects of acitretin on the expression of VEGF in psoriatic lesions of the skin. We compared the expression levels of VEGF between pre- and post-acitretin treated skin - 10 psoriatic skin lesions and 3 normal (control) skins. The expressions of VEGF in psoriatic skin lesions were significantly higher than in normal control skin. The expressions of VEGF in psoriatic skin lesions post-treatment were lower than those pre-treatment. Acitretin revealed inhibitory effects on angiogenesis by reducing the expression of angiogenic factors such as VEGF in psoriatic skin lesions. We suggest that acitretin may be useful in therapeutic approaches to psoriasis management, possibly related to angiogenesis.

Loss of phospholipase D2 impairs VEGF-induced angiogenesis

  • Lee, Chang Sup;Ghim, Jaewang;Song, Parkyong;Suh, Pann-Ghill;Ryu, Sung Ho
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.191-196
    • /
    • 2016
  • Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis and critical for normal embryonic development and repair of pathophysiological conditions in adults. Although phospholipase D (PLD) activity has been implicated in angiogenic processes, its role in VEGF signaling during angiogenesis in mammals is unclear. Here, we found that silencing of PLD2 by siRNA blocked VEGF-mediated signaling in immortalized human umbilical vein endothelial cells (iHUVECs). Also, VEGF-induced endothelial cell survival, proliferation, migration, and tube formation were inhibited by PLD2 silencing. Furthermore, while Pld2-knockout mice exhibited normal development, loss of PLD2 inhibited VEGF-mediated ex vivo angiogenesis. These findings suggest that PLD2 functions as a key mediator in the VEGF-mediated angiogenic functions of endothelial cells.