• 제목/요약/키워드: and western blot analysis

검색결과 1,669건 처리시간 0.033초

Schedule-Dependent Effect of Epigallocatechin-3-Gallate (EGCG) with Paclitaxel on H460 Cells

  • Park, Sunghoon;Kim, Joo-Hee;Hwang, Yong Il;Jung, Ki-Suck;Jang, Young Sook;Jang, Seung Hun
    • Tuberculosis and Respiratory Diseases
    • /
    • 제76권3호
    • /
    • pp.114-119
    • /
    • 2014
  • Background: Epigallocatechin-3-gallate (EGCG), a major biologically active component of green tea, has anti-cancer activity in human and animal models. We investigated the schedule-dependent effect of EGCG and paclitaxel on growth of NCI-H460 non-small cell lung cancer cells. Methods: To investigate the combined effect of EGCG (E) and paclitaxel (P), combination indices (CIs) were calculated, and cell cycle analysis was performed. For the effect on cell apoptosis, western blot analysis was also performed. Results: CI analysis demonstrated that both concurrent and sequential E ${\rightarrow}$ P treatments had antagonistic effects (CIs >1.0), but sequential P ${\rightarrow}$ E had synergistic effects (CIs <1.0), on the growth inhibition of NCI-H460 cells. In the cell cycle analysis, although paclitaxel induced $G_2/M$ cell cycle arrest and increased the sub-G1 fraction, concurrent EGCG and paclitaxel treatments did not have any additive or synergistic effects compared with the paclitaxel treatment alone. However, western blot analysis demonstrated that sequential P ${\rightarrow}$ E treatment decreased the expression of Bcl-2 and procaspase-3 and increased poly(ADP-ribose) polymerase (PARP) cleavage; while minimal effects were seen with concurrent or sequential E ${\rightarrow}$ P treatments. Conclusion: Concurrent or sequential E ${\rightarrow}$ P treatment had opposite effects to P ${\rightarrow}$ E treatment, where P ${\rightarrow}$ E treatment showed a synergistic effect on growth inhibition of NCI-H460 cells by inducing apoptosis. Thus, the efficacy of EGCG and paclitaxel combination treatment seems to be schedule-dependent.

Effect of Trichloroethylene on the Induction of Rat Liver Microsomal Enzymes

  • Chang, Sung-Keun;Jeong, Hyo-Seok;Chai, Se-Ok;Kim, Ki-Woong;Park, Sang-Shin
    • BMB Reports
    • /
    • 제30권4호
    • /
    • pp.237-239
    • /
    • 1997
  • The effects of trichloroethylene (TRI) on the induction of cytochrome P-450 (CYP) and several other related enzymes in Sprague Dawley rats were investigated Rats were treated with TRI 150. 300. 600 mg/kg body weight in corn oil intra peritoneally once a day for 2 days. The total contents of microsomal CYP and cytochrome $b_5\;(b_5)$ decreased with the increase of TRI concentration. but the activity of p-nitrophenol hydroxylase increased with the increase of TRI dosage (p<0.05). Western blot analysis which utilized monoclonal antibodies against CYP2E1 also showed a significant increase in the CYP2E band density. The increase of the activity of pentoxyresolufin-O-deethylase also was observed with the TRI treatment (p<0.05) although there was no significant increase in the cytochrome CYP2B1/2 in Western blotting The TRI did not affect the induction of aryl hydrocarbon hydroxylase. These findings suggest that the CYP2E1 is the primary enzyme which could be induced by TRI treatment in rats.

  • PDF

Different Responses in Brain Regions upon Heat Shock in Adult Zebrafish (Danio rerio)

  • Hwang, Chang-Nam;Lee, Dong-Ho;Lee, Sang-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권3호
    • /
    • pp.199-205
    • /
    • 2009
  • HSP70 has widely been induced in in vivo hyperthermia conditions in various organisms to study gene regulation and recently neuroprotectve roles of the induced gene expression under varying conditions. We investigated different responses among various tissues in zebrafish under heat shock to evaluate whether spatial and temporal expression pattern of zebrafish (z) hsp70 in transcriptional and translational level under heat shock stress in different brain regions. Heat shock groups were given for 1 h at $37^{\circ}C$ after recovery by transferring the treated animals back to $28^{\circ}C$ for 1, 2 and 24 h for recovery, respectively. Control (CTRL) group was kept at $28^{\circ}C$. At the end of treatments, five animals were collected and used for isolation of total RNAs and peptides from the corresponding tissues. Expression of zhsp70 mRNA showed different patterns in recovery periods in the tissues including the brain, eye, intestines, muscles, heart and testis by RT-PCR. Unlike the RT-PCR analysis, Northern blot analysis demonstrated nearly 30-fold increase in zhsp70 at 1 h heat shock, suggesting that RT-PCR may not be appropriate in unmasking regulation of the time-dependent zhsp70 expression. In the experiment involving different brain regions, the cerebellum showed gradual activation at 1 h to R1h and decreases in R2h and R24h, while the medulla oblongata and optic tectum showed gradual increase at R1h and decrease at R24h, indicating that different brain tissues respond specifically to heat shock in inducing zhsp70 and recovering from the heat shock status. Western blot analysis also demonstrated that the intracellular levels of zHSP70 in three different brain regions including the cerebellum, medulla oblongata and optic tectum are differently induced and recovered to normal state. These results clearly demonstrate that different regions of the body and the brain tissues are responding differently to heat shock in the aspects of its level of expression and speed of recovery.

  • PDF

Overexpression of Mouse Nck Transforms Mouse Febroblast NIH3T3

  • ;한선미;;박동은
    • Animal cells and systems
    • /
    • 제1권3호
    • /
    • pp.521-526
    • /
    • 1997
  • We isolated a mouse nck cDNA from the thymus cDNA expression library. The cDNA encodes a 377 amino acid protein and displays 97% amino acid sequence identity to human oncogenic protein nck, which is composed almost exclusivelv of three src homology 3 (SH3) domains and one SH2 domain. The sequence analysis also showed that the isolated cDNA is the mouse counterpart of the human nck and different from the mouse grb4, which has been reported to be highly similar to the human nck and, therefore considered as a mouse nck, Northern blot analysis showed that the transcript of the gene was 1.8 kb and was highly expressed in the testis, thymus, and brain but moderately in the liver and lymph node. Western blot analysis showed that the size of the protein was about 47 kDa. Overexpression of the mouse Nck transformed a mouse fibroblast cell line, NIH3T3. The results clearly indicate that normal nck gene has transforming ability and provide an argument against a suggested possibility that the transforming ability of the human nck gene is due to a mutation(s) in the gene.

  • PDF

인체세포주 A431에서 방사선 조사 후 DNA수선 유전자 발현과 세포고사와의 관계에 관한 연구 (Relationship between Radiation Induced Activation of DNA Repair Genes and Radiation Induced Apoptosis in Human Cell Line A431)

  • 범희승;민정준;최근희;김경근
    • 대한핵의학회지
    • /
    • 제34권2호
    • /
    • pp.144-153
    • /
    • 2000
  • 목적: 피부세포인 A431세포주에서 방사선 조사에 의한 세포고사가 방사선량과 방사선 조사 후 경과시간에 따라서 어떻게 변하는지를 밝혀보고, 방사선에 의해 유도된 수선유전자의 발현을 방사선량별, 조사 후 경과시간별로 분석하여 세포고사와 어떤 관계가 있는지 알아보고자 하였다. 대상 및 방법: 한국 세포주은행으로부터 분양받은 피부상피암 세포의 일종인 A431을 Cs-137 세포조사기를 이용하여 5 Gy, 25 Gy씩 조사하고 4, 12, 48시간이 지난 다음 세포를 모아 유세포계측법을 이용하여 고사세포를 계수하였다. 또한 이 세포들을 Northern blot analysis, Western blot analysis를 시행하여 방사선량별, 경과시간별로 유전자의 변화를 분석하였다. 각 실험군간의 통계적 유의성은 SPSS 통계프로그램을 사용하여 MANOVA test에 의해 검정하였으며, p값 0.05 미만을 유의한 수준으로 판정하였다. 결과: 유세포 계측기로 측정한 고사세포의 비율은 방사선 조사 후 12시간째에 가장 유의하게 증가하였다 (p<0.01). DNA수선유전자의 발현은 5 Gy 조사 후 p53, p21, hRAD 유전자가 12시간째에 증가하였고, 25 Gy 조사 후에는 hRAD50과 p21이 12시간에 증가하였으며, p53과 GADD45는 12시간까지 별 변화가 없었으나 이후 증가하여 48시간에 가장 높은 발현을 보였다. 결론: 피부상피암세포에서 방사선에 의해 유도되는 세포고사는 방사선 조사 후 12시간에 가장 현저해지는 것을 알 수 있었으며, 이 세포고사에 DNA수선 유전자가 밀접한 관련이 있을 것으로 보이는데, 특히 최근에 발견된 hRAD50 유전자도 세포고사와 밀접한 관련이 있을 것으로 사료되었다.

  • PDF

환경오염물질 폭로에 따른 인체세포에서의 rpt-1 발현 및 역할의 분석 (Analysis of biological functions of rpt-1 in human cells with exposure to environmental pollutants)

  • 김선영;양재호
    • 한국환경성돌연변이발암원학회지
    • /
    • 제21권2호
    • /
    • pp.164-168
    • /
    • 2001
  • Abel et al. in Germany discovered a new dioxin-responsive gene, which has later been identified as rpt-1 (regulatory protein T-lymphocyte 1). While it is speculated that rpt-1 may play a role in signal transduction and carcinogenesis, its roles and functions remain unknown. The present study attempted to analyze functions of rpt-1 in human epithelial cells following the xenobiotic exposures. While German counterpart analyzed expressionn of rpt-1 in spleen and thymus cells from mouse and rat and characterizes molecular properties of the gene, our work mainly focused on analyzing function of rpt-1 in human skin cells. Expression of rpt-1 in human cells were analyzed by western and northern blot RT-PCR analysis. Expression of rpt-1 as well as Staf-50 in human cells with or without exposure to environmental pollutants were also analyzed by northern blot analysis, since Staf-50 is homologous with rpt-1 and found in human cells. To help study roles of rpt-1 in human cell system, retroviral vector system carrying rpt-1 gene under the CMV promoter were constructed and transfected. Cells overexpressing the gene after the transfection showed an increase of cell density and soft agar colony formations, as compared to the control cells, suggesting that rpt-1 may play a certain role in the transformation processes of human cells. While the expression of rpt-1 in spleen and thymus is known to be strong in the laboratory animals, both the basal and TCDD-induced expression of rpt-1 in the current cellular system remained insignificant. It is speculated that the expression pattern of rpt-1 may be tissue- and species-specific. The present study demonstrated a strong expression of rpt-1 protein in the brain of SD rat model. Since there is no previous report on the expression of rpt-1 in the brain tissue, the result may play a significant role in understanding dioxin-induced neurotoxicities in the future. The present study provides an opportunity to understand a role of rpt-1 in human cell system and suggest a possible lead and basis for the future study of dioxin-induced neurotoxicities.

  • PDF

DnaJC18, a Novel Type III DnaJ Family Protein, is Expressed Specifically in Rat Male Germ Cells

  • Gomes, Cynthia;Soh, Jaemog
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권3호
    • /
    • pp.237-247
    • /
    • 2017
  • Mammalian spermatogenesis occurs in a precise and coordinated manner in the seminiferous tubules. One of the attempts to understand the detailed biological process during mammalian spermatogenesis at the molecular level has been to identify the testis specific genes followed by study of the testicular expression pattern of the genes. From the subtracted cDNA library of rat testis prepared using representational difference analysis (RDA) method, a complimentary DNA clone encoding type III member of a DnaJ family protein, DnaJC18, was cloned (GenBank Accession No. DQ158861). The full-length DnaJC18 cDNA has the longest open reading frame of 357 amino acids. Tissue and developmental Northern blot analysis revealed that the DnaJC18 gene was expressed specifically in testis and began to express from postnatal week 4 testis, respectively. In situ hybridization studies showed that DnaJC18 mRNA was expressed only during the maturation stages of late pachytene, round and elongated spermatids of adult rat testis. Western blot analysis with DnaJC18 antibody revealed that 41.2 kDa DnaJC18 protein was detected only in adult testis. Immunohistochemistry study further confirmed that DnaJC18 protein, was expressed in developing germ cells and the result was in concert with the in situ hybridization result. Confocal microscopy with GFP tagged DnaJC18 protein revealed that it was localized in the cytoplasm of cells. Taken together, these results suggested that testis specific DnaJC18, a member of the type III DnaJ protein family, might play a role during germ cell maturation in adult rat testis.

Epigallocatechin Gallate (EGCG)에 노출된 용혈성 Bacillus cereus MH-2의 세포 반응 및 프로테옴 분석 (Cellular responses and proteomic analysis of hemolytic Bacillus cereus MH-2 exposed to epigallocatechin gallate (EGCG))

  • 김동민;박상국;오계헌
    • 미생물학회지
    • /
    • 제52권3호
    • /
    • pp.260-268
    • /
    • 2016
  • 본 연구의 목적은 시중에 판매되고 있는 쌈장에서 용혈성을 가지는 Bacillus cereus MH-2를 분리하여, EGCG 노출에 따른 MH-2 균주의 세포 반응과 프로테옴 분석을 위해 수행되었다. 다양한 농도의 EGCG에 노출된 MH-2 균주는 노출시간이 증가함에 따라 생존률은 점차 감소함을 보였다. MH-2 균주의 alginate 생성량은 EGCG의 농도가 증가함에 따라 감소하였으며, 특정 EGCG 농도에서 노출시간이 진행됨에 따라 그 생성량은 증가하는 것으로 나타났다. SDS-PAGE 및 anti-DnaK와 anti-GroEL의 단일항체를 이용한 Western blot 통한 분석으로, 두 가지 스트레스 충격단백질인 70 kDa의 DnaK와 60 kDa의 GroEL의 발현은 대수생장기의 배양에서 EGCG의 농도에 비례하여 감소하는 것을 확인하였다. EGCG에 노출된 세균의 세포 외부형태 변화를 주사전자현미경을 이용하여 관찰한 결과, 세포 표면의 돌출부 생성과 함께 세포의 뭉그러짐이 관찰되었다. EGCG에 노출된 Bacillus cereus MH-2 배양의 수용성 단백질 부분에 대한 2-DE에서 20개의 단백질 스팟이 EGCG 노출에 의해 크게 변화하는 것이 확인되었다. 장독소(hemolysin BL lytic component L1, hemolysin BL-binding protein), chaperon (DnaK, GroEL), 세포방어요소(peptidase M4 family proteins), 에너지 및 물질대사 등에 수반되는 이들 단백질은 MALDI-TOF를 사용한 peptide mass fingerprinting에 의해 동정되었다. 이들 결과는 B. cereus MH-2에 대한 EGCG-유도 스트레스와 세포독성의 기작을 이해하는데 중요한 단서를 제공할 것이다.

토복령(土茯笭)이 피부암 세포의 성장에 미치는 영향 (Effects of Smilax China L. on the Growth of Skin Cancer Cells)

  • 송시열;정민영;최정화;박수연
    • 한방안이비인후피부과학회지
    • /
    • 제37권1호
    • /
    • pp.1-16
    • /
    • 2024
  • Objectives : We aimed to study the effect of Smilax China L.(SCL), which has anti-inflammatory, antioxidant, and anticancer effects, on the growth of skin cancer cells. Methods : HaCaT cells, a normal human cell line, and skin cancer cells including A431, SK-MEL-5 and SK-MEL-28 cells were treated with Smilax China L. ethanol extract(SCL-EtOH) at concentrations of 5, 10, 20 and 40㎍/㎖. Meanwhile, JB6 Cl41, a normal mouse epithelial cell line, was treated with epidermal growth factor(EGF) and phorbol 12-myristate 13-acetate(TPA), an inflammatory factor, to induce cell transformation and treated with SCL-EtOH. In addition, we treated SK-MEL-5 and SK-MEL-28 cells with SCL-EtOH at various concentrations and checked the effect on the cell cycle. Results : As a result, it showed no toxicity to HaCaT cells up to the highest concentration of 40㎍/㎖, and significant cell growth inhibition to A431, SK-MEL-5 and SK-MEL-28 cells in a time- and concentration-dependent manner. In addition, as a result of checking the shape of skin cancer cells according to SCL-EtOH treatment, it was observed that as the concentration increased, the number of normally attached and growing cells decreased and the shape of the cells changed. Colony formation was significantly reduced in a concentration-dependent manner in JB6 Cl41 cells treated with EGF or TPA. Flow cytometry analysis with propidium iodide(PI) staining showed that SCL-EtOH induced the G2/M phase arrest. We further confirmed the decrease in Cyclin B1 expression and increase in p27 expression associated with the G2/M phase of the cell cycle through western blot analysis. Flow cytometry analysis confirmed that SCL-EtOH induced cell apoptosis. Furthermore, through Western blot analysis, it was observed that the expression of cleaved-caspase-7, which is related to apoptosis, increased. Finally, it was confirmed that the expression of COX-2, an inflammatory marker protein, decreased in a concentration-dependent manner with SCL-EtOH. Conclusions : Through the above results, we have established a basis for applying SCL to the treatment of skin cancer.

DMH에 의한 비정상적인 혈관 내피세포의 증식에서 Protein Kinase C 동종효소 Alpha 단백발현의 특성 (Characterization of the Expression of PKCα(Isoform) in DMH-induced Vascular Endothelial Proliferation)

  • 남수봉;배용찬;박숙영;최수종
    • Archives of Plastic Surgery
    • /
    • 제34권6호
    • /
    • pp.679-684
    • /
    • 2007
  • Purpose: DMH(1,2-dimethylhydrazine) has been known to induce vascular neoplasm such as malignant endothelioma in animal experiment, through induction of abnormal proliferation of HUVECs. In our previous studies, 11 types of PKC isoenzymes were determined by RT-PCR and the expression of $PKC{\alpha}$, and ${\mu}$ was more prominent than other PKC isoenzymes in the DMH-treated group. However, this result was not based on objective assessment. In this study, we further evaluated the role of $PKC{\alpha}$ on the DMH-induced abnormal proliferation of HUVECs by two different methods to identify its presence with high relevance in objective view. $PKC{\mu}$ will be investigated in further study. Methods: The study was conducted with the cultured HUVECs group(control) and the $0.75{\times}10^{-9}M$ DMH-treated group. After processing protein extraction in 0 and 24 hour, extracted protein was treated of quantitative test through BCA protein assay. In the western blot analysis, electrophoresis was performed in the order of gel preparation, sample preparation, and gel running. Electrotransfer to nitrocellulose membrane and reaction with antibody were done. Detection of $PKC{\alpha}$ was achieved through "Gel Image Analysis System". In the fluorescence immunocytochemical analysis, the grading of radiance of the intracellular $PKC{\alpha}$ particles was detected with confocal microscope after treating with primary and fluorescent secondary antibody in 0 and 24 hours. Results: The Western blot analysis showed increased $PKC{\alpha}$ expression from the specimen obtained in 24 hour of the DMH treatment group when compared to those in control group. Under confocal fluorescence microscope, the emitting radiance in the DMH treated group was brighter at 24 hours as well. Conclusion: We believe that $PKC{\alpha}$ plays a role in DMH-induced abnormal proliferation of the vascular endothelium, which may provide insights in understanding the vascular neoplasm.