• Title/Summary/Keyword: and western blot analysis

Search Result 1,669, Processing Time 0.031 seconds

Gallotannin regulates apoptosis and COX-2 expression via Akt and p38kinase pathway in human lung cancer cell line, A549

  • Yu, Seon-Mi;Gweon, Eun-Jeong;Chung, Ki-Wha;Kim, Kwang-Hoon;Cho, Hong-Sik;Kim, Song-Ja
    • Animal cells and systems
    • /
    • v.16 no.5
    • /
    • pp.366-375
    • /
    • 2012
  • Gallotannin (GT) is derived from plant poly phenol and is associated with biological actions in a wide range of cells. In this study, we evaluated the effect of GTon apoptosis and cyclooxygenase-2 (COX-2) expression and attempted to shed light on the mechanism of action in A549 human lung carcinoma cells. We found that GT dramatically induced apoptosis as demonstrated by expression of p53 and active caspase-3 via western blot analysis and fragmented DNA as detected by DNA fragmentation and DAPI staining. We also observed that GT significantly causes COX-2 expression in a dose-dependent manner determined by western blot analysis. Phosphorylation of Akt and p38 was considerably increased by GT in A549 human lung carcinoma cells. Inhibition of Akt and p38kinase with LY294002 or SB203580 suppressed GT-induced apoptosis and COX-2 expression. Furthermore, we have shown that prevention of COX-2 with NS398 or indomethacin does not any effects on apoptosis induced by GT. Taken together, our present results suggest that GT regulates apoptosis and COX-2 expression through Akt and p38kinase pathway in A549, human lung carcinoma cells.

Effect of Cryopreservation on the Heat Shock Protein 90 Expression in Mouse Ovarian Tissue (동결보존이 생쥐 난소 조직 내 Heat Shock Protein 90의 발현에 미치는 영향)

  • Lee, Sun-Hee;Park, Yong-Seog;Yeum, Hye-Won;Song, Gyun-Jee;Han, Sang-Chul;Bae, In-Ha
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2002
  • Objective : Heat shock protein family is related to protective mechanism of cells by environmental changes. This study was performed to evaluate the effect of cryopreservation on the heat shock protein 90 (Hsp90) expression in mouse ovarian tissue. Methods : Cryopreservation of mouse ovarian tissue was carried out by slow freezing method. The mRNA level of Hsp90 expression in both fresh and cryopreserved mouse ovarian tissue was analyzed by RT-PCR. The protein expression of Hsp90 was evaluated by Western blot analysis and immunohistochemistry. Results: The mRNA and protein of Hsp90 were expressed in both fresh and cryopreserved mouse ovarian tissue. The amount of Hsp90 mRNA was increased in cryopreserved ovarian tissue after 60 and 90 minutes after thawing and incubation. The amount of Hsp90 protein was increased in the cryopreserved ovarian tissue after 6 hours of the incubation in Western blot analysis. In immunohistochemical study, Hsp90 protein was localized in cytoplasm of oocytes and granulosa cells. Significant level of immunoreactive Hsp90 protein was detected in theca cells contrast to the weak expression in ovarian epithelial cells. Conclusion: This results showed the increase of Hsp90 expression in both mRNA and protein level in the cryopreserved mouse ovarian tissue. It can be suggested that Hsp90 may play a role in the protective or recovery mechanism against the cell damage during cryopreservaion.

The Effect of Bee Venom & Melittin Solution on Cell Death in Synovial Cell Line (봉독(蜂毒) 및 Melittin 약침액(藥鍼液)이 관절염(關節炎) 활액세포(滑液細胞)에 미치는 영향(影響))

  • Han, Sang-won;Park, Ki-hyeon;Jung, Tae-young;Seo, Jung-chul
    • Journal of Acupuncture Research
    • /
    • v.19 no.4
    • /
    • pp.74-88
    • /
    • 2002
  • Objectives : This study is aimed to investigate the effects of bee venom and melittin on cell death in synovial cell line. Methods : It was evaluated by using MTT assay, morphologic method, DNA fragmenation, NO generation, flow cytometry, immunocytochemistry analysis, RT-PCR, Western blot. Results : The obtained results are summarized as follows: 1. The MTT assay demonstrated that synovial cell viability was significantly inhibitted dose-dependently by treatment with bee venom and melittin in comparison with control. 2. The morphologic study demonstrated that synovial cell showed apoptosis after treatment with bee venom and melittin for 6 hours using microscope. 3. In case of NO generation bee venom group and melittin group showed significant inhibition in comparison with control. 4. The Flow cytometry demonstrated that apoptosis of synovial cell treated with bee venom and melittin was related with stop of cell cycle in stage of $G_0/G_1$. 5. DNA fragmenation demonstrated that synovial cell treated with bee venom and melittin showed DNA ladder below l Kbp. 6. Immunocytochemistry assay demonstrated that COX-II and PLA2 were strongly down-regulated by treatment with bee venom and melittin whereas iNOS was almostly not expressed by bee venom treatment and slightly expressed by melittin treatment. 7. RT-PCR analysis demonstrated that iNOS were strongly down-regulated by treatment with bee venom and melittin whereas COX-II was almostly not expressed by bee venom treatment and slightly expressed by melittin treatment. 8. Western blot demonstrated that iNOS were strongly down-regulated by treatment with $15{\mu}g/ml$ bee venom whereas COX-II was strongly down-regulated from $5{\mu}g/ml$ bee venom. Conclusions : These results suggest that bee venom and melittin have significant effect on cell death in synovial cell line and further study is needed in vivo.

  • PDF

Suppressed DNA Repair Mechanisms in Rheumatoid Arthritis

  • Lee, Sang-Heon;Firestein, Gary S
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.208-216
    • /
    • 2002
  • Background: Reactive oxygen and nitrogen are produced by rheumatoid arthritis (RA) synovial tissue and can induce mutations in key genes. Normally, this process is prevented by a DNA mismatch repair (MMR) system that maintains sequence fidelity. Key members of the MMR system include MutS${\alpha}$ (comprised of hMSH2 and hMSH6), which can sense and repair single base mismatches and 8-oxoguanine, and MutS${\beta}$ (comprised of hMSH2 and hMSH3), which repairs longer insertion/deletion loops. Methods: To provide further evidence of DNA damage, we analyzed synovial tissues for microsatellite instability (MSI). MSI was examined by PCR on genomic DNA of paired synovial tissue and peripheral blood cells (PBC) of RA patients using specific primer sequences for 5 key microsatellites. Results: Surprisingly, abundant MSI was observed in RA synovium compared with osteoarthritis (OA) tissue. Western blot analysis of the same tissues for the expression of MMR proteins demonstrated decreased hMSH6 and increased hMSH3 in RA synovium. To evaluate potential mechanisms of MMR regulation in arthritis, fibroblast-like synoviocytes (FLS) were isolated from synovial tissues and incubated with the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP). Western blot analysis demonstrated constitutive expression of hMSH2, 3 and 6 in RA and OA FLS. When FLS were cultured with SNAP, the RA synovial pattern of MMR expression was reproduced (high hMSH3, low hMSH6). Conclusion: Therefore, oxidative stress can relax the DNA MMR system in RA by suppressing hMSH6. Decreased hMSH6 can subsequently interfere with repair of single base mutations, which is the type observed in RA. We propose that oxidative stress not only creates DNA adducts that are potentially mutagenic, but also suppresses the mechanisms that limit the DNA damage.

Activation of Macrophages by the Components Produced from Cordyceps militaris

  • Kim, Hyun-Yul;Kim, Kwang-Hee;Han, Shin-Ha;Lee, Seong-Jung;Kwon, Jeung-Hak;Lee, Sung-Won;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.7 no.2
    • /
    • pp.57-65
    • /
    • 2007
  • Background: Cordyceps militaris have been reported to modify the immune and inflammatory responses both in vivo and in vitro. Macrophages play important roles in the innate immunity through the phagocytosis of antigens. This study examined the effects of Cordyceps militaris on the activation of murine macrophage RAW 264.7 cells and primary macrophages. Methods: The components contained in culture broth of Cordyceps militaris were purified by propyl alcohol extraction and HP 20 column chromatography to CMDB, CMDBW, CMDB5P, and CMDB25P. The amounts of nitric oxide (NO) were determined by using ELISA, Griess reagent respectively. The amounts of some cytokines were determined by using ELISA, western blot, and RT-PCR The expression levels of cell surface molecules (ICAM-1, B7-1 and B7-2) were measured by flow cytometric analysis. Results: All the components of Cordyceps militaris produced significant amounts of NO. In particular, CMDB produced much more NO in RAW 264.7 cells and primary macrophages than other fractions of Cordyceps militaris. CMDB increased significantly the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-1${\beta}$, and IL-6 dose-dependently in RAW 264.7 cells. Examination of the gene expression level also showed that the enhanced production of cytokines was correlated with the up-regulation of i-NOS expression, cycloxygenase (COX)-2 expression, IL-1${\beta}$ and IL-6 expression, and TNF-${\alpha}$ expression on the expression of mRNAs by semi-quantitative RT-PCR Western blot analysis also confirmed that CMDB enhances the expression level of these cytokines. Conclusion: These results show that CMDB stimulates the production of NO and pro-inflammatory cytokines and can also up-regulate the gene expression levels in macrophages.

Anti-Cancer Activity of the Flower Bud of Sophora japonica L. through Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells

  • Lee, Jin Wook;Park, Gwang Hun;Eo, Hyun Ji;Song, Hun Min;Kim, Mi Kyoung;Kwon, Min Ji;Koo, Jin Suk;Lee, Jeong Rak;Lee, Man Hyo;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.297-304
    • /
    • 2015
  • The flower buds of Sophora japonica L (SF), as a well-known traditional Chinese medicinal herb, have been used to treat bleeding-related disorders such as hematochezia, hemorrhoidal bleeding, dysfunctional uterine bleeding, and diarrhea. However, no specific anti-cancer effect and its molecular mechanism of SF have been described. Thus, we performed in vitro study to investigate if treatment of SF affects activating transcription factor 3 (ATF3) expression and ATF3-mediated apoptosis in human colorectal cancer cells. The effects of SF on cell viability and apoptosis were measured by MTT assay and Western blot analysis against cleaved poly (ADP-ribose) polymerase (PARP). ATF3 activation induced by SF was evaluated using Western blot analysis, RT-PCR and ATF3 promoter assay. SF treatment caused decrease of cell viability and increase of apoptosis in a dose-dependent manner in HCT116 and SW480 cells. Exposure of SF activated the levels of ATF3 protein and mRNA via transcriptional regulation in HCT116 and SW480 cells. Inhibition of extracellular signal-regulated kinases (ERK) 1/2 by PD98059 and p38 by SB203580 attenuated SF-induced ATF3 expression and transcriptional activation. Ectopic ATF3 overexpression accelerated SF-induced cleavage of PARP. These findings suggest that SF-mediated apoptosis may be the result of ATF3 expression through ERK1/2 and p38-mediated transcriptional activation.

Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5

  • Kim, Shin-Jung;Kim, An Keun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • Background: Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). Methods: Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. Results: The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and $100{\mu}M$), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, $p21^{WAF1/CIP1}$ and $p15^{INK4B}$ and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosiserelated proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. Conclusion: Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2/ER+) and MDA-MB-453 (HER2+/ER) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.

Thymoquinone (TQ) regulates cyclooxygenase-2 expression and prostaglandin E2 production through PI3kinase (PI3K)/p38 kinase pathway in human breast cancer cell line, MDA-MB-231

  • Yu, Seon-Mi;Kim, Song-Ja
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.274-279
    • /
    • 2012
  • Thymoquinone (TQ), a drug extracted from the black seeds of Nigella sativa, has been shown to exhibit anti-inflammatory, anti-oxidant, and anti-neoplastic effects in numerous cancer cells. The effects of TQ on cyclooxygenase-2 (COX-2) expression and prostaglandin $E_2$ ($PGE_2$) production in MDA-MB-231, however, remain poorly understood. Western blot analysis and immunofluorescence staining were performed to study the expression levels of inflammation regulatory proteins in MDA-MB-231. $PGE_2$ assay was conducted to explore the TQ-induced production of $PGE_2$. In this study, we investigated the effects of TQ on COX-2 expression and $PGE_2$ production in MDA-MB-231. TQ significantly induced COX-2 expression and increased $PGE_2$ production in a dose-dependent manner, as determined by a Western blot analysis and $PGE_2$ assay. Furthermore, the activation of Akt and p38 kinase, respectively, was up-regulated in TQ treated cells. Inhibition of p38 kinase with SB203580 and PI3kinase (PI3K) with LY294002 abolished TQ-caused COX-2 expression and decreased $PGE_2$ production. These results collectively demonstrate that TQ effectively modulates COX-2 expression and $PGE_2$ production via PI3K and p38 kinase pathways in the human breast cancer cell line MDA-MB-231.

Effects of Bee Venom on Glioma Cells (봉독(峰毒)이 Glioma Cell에 미치는 효과(效果))

  • Lee, Joo-Yeon;Kim, In-Ja;Choi, Bang-Seob;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.19 no.3
    • /
    • pp.117-127
    • /
    • 2008
  • Objective: Bee venom (BV) has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and relief of pain in Oriental medicine. The two main components of BV are melittin and phospholipase A2 (PLA2). Of these, melittin, the major active ingredient of BV, has been reported to induce apoptosis and to possess anti tumor effects. Several studies have established that the agents inducing apoptosis in target organs suppress tumorigenesis. As the other component, PLA2 has been reported to induce neurite outgrowth in PC12 cells. However, there was no report about proliferative effect of BV in neuronal cells. In order to examine the effect of BV on glioma cell, human glioma cell line, U87 was used. Methods: Analysis of proliferation was confirmed by MTT assay. BV increased cell number through dose and duration dependent manner and these effects are apparent at a concentration of 10 ug/ml. To observe which signaling molecules will be activated by BV, phosphorylation of Akt, MAPK, PYK2 or CREB were examined by Western blot analysis. To study the long term effect of BV in U87 cells, the image of cells treated with BV for 4 days were obtained. Results: The phosphorylation levels of PYK2 and Akt were increased at 5 min after addition of 10 ug/ml of BV and sustained to 2 hours. On the other hand, phosphorylation of MAPK and CREB were increased at 5 min, maximum at 10 min, and returned to 30 min. These imply that BV may activate two different signaling pathways, PYK2/Akt and MAPK/CREB. BV treated cells showed increased neurite number and length. Conclusion: These results propose that BV may induce differentiation as well as proliferation of U87 cells through the activation of PYK2/ Akt and MAPK/ CREB.

  • PDF

Effects of the Bee Venom on Human Gastric Adenocarcinoma Cell Lines (봉독이 위암 세포주에 미치는 효과)

  • Heo, Gyeong;Kim, Myung Ho;Lim, Seong Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.92-98
    • /
    • 2013
  • Bee Venom(below BV) has been used in alternative medicine to treat the diseases, such as pain diseases. BV contains a variety of peptides, including melittin, apamin, adolapin, MCD peptide, enzymes(i.e. PLA2), amines(i.e. histamine and epinephrine), and nonpeptide components. The two main components of BV are melittin and PLA2. The cell cytotoxic effects through the activation of PLA2 by melittin have been suggested to be the critical mechanism for the depress of cancer cell. Melittin and PLA2 have been reported to induce apoptosis and to possess anti-cancer effects and neurite outgrowth in PC12 cells. Analysis of proliferation was confirmed by MTT assay. BV decreased cell number through dose- and duration-dependent manner and these effects are apparent at a concentration of 3 ${\mu}g/ml$. To observe which signaling molecules will be activated by BV, phosphorylation of ERK, p38 MAPK, JNK and ERM were examined by Western blot analysis. To study the long term effect of BV in human gastric adenocarcinoma cell lines, the image of cells treated with BV for 4 days were obtained. BV was shown to exhibit anti-cancer activity in human gastric adenocarcinoma cell lines at a broad range of concentrations of 3 ${\mu}g/ml$. ERK, p38 MAPK and JNK were found to increase in BV treated cells. However, ERM which known to be involved in the cell death, was gradually decreased to 30minutes after addition 3 ${\mu}g/ml$ of BV. These results provide a possible BV-induced inhibitory signal for cancer proliferation that is initiated by the decrease in ERM activity. Moreover, it is likely that the activation of ERK, p38 MAPK and JNK are required for the BV-induced inhibition of cancer proliferation.