• Title/Summary/Keyword: and turbidity

Search Result 1,695, Processing Time 0.034 seconds

Improvement of turbid water prediction accuracy using sensor-based monitoring data in Imha Dam reservoir (센서 기반 모니터링 자료를 활용한 임하댐 저수지 탁수 예측 정확도 개선)

  • Kim, Jongmin;Lee, Sang Ung;Kwon, Siyoon;Chung, Se Woong;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.931-939
    • /
    • 2022
  • In Korea, about two-thirds of the precipitation is concentrated in the summer season, so the problem of turbidity in the summer flood season varies from year to year. Concentrated rainfall due to abnormal rainfall and extreme weather is on the rise. The inflow of turbidity caused a sudden increase in turbidity in the water, causing a problem of turbidity in the dam reservoir. In particular, in Korea, where rivers and dam reservoirs are used for most of the annual average water consumption, if turbidity problems are prolonged, social and environmental problems such as agriculture, industry, and aquatic ecosystems in downstream areas will occur. In order to cope with such turbidity prediction, research on turbidity modeling is being actively conducted. Flow rate, water temperature, and SS data are required to model turbid water. To this end, the national measurement network measures turbidity by measuring SS in rivers and dam reservoirs, but there is a limitation in that the data resolution is low due to insufficient facilities. However, there is an unmeasured period depending on each dam and weather conditions. As a sensor for measuring turbidity, there are Optical Backscatter Sensor (OBS) and YSI, and a sensor for measuring SS uses equipment such as Laser In-Situ Scattering and Transmissometry (LISST). However, in the case of such a high-tech sensor, there is a limit due to the stability of the equipment. Therefore, there is an unmeasured period through analysis based on the acquired flow rate, water temperature, SS, and turbidity data, so it is necessary to develop a relational expression to calculate the SS used for the input data. In this study, the AEM3D model used in the Water Resources Corporation SURIAN system was used to improve the accuracy of prediction of turbidity through the turbidity-SS relationship developed based on the measurement data near the dam outlet.

Control of Turbid Water Transport with Filamentous Mat (섬모상 매트에 의한 탁수이동차단에 관한 실험적 연구)

  • Yu, Jianghua;Yi, Qitao;Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.44-51
    • /
    • 2010
  • A lab-scale apparatus for turbid water transport control was tested and examined. The channel had a dimension of $100cm{\times}30cm{\times}15cm$ (length${\times}$hight${\times}$width). And the turbidity water was prepared using two types of particles, bentonite and loess. The channel equipped with filamentous mat was operated under various shock load conditions. In the control channel, instantly, turbid water mixed with the clean water inside the channel and turbidity prevails the entire channel. While in the mat-equipped channel, it increases only at the bottom. Overall, the filamentous mat gave capture efficiency of 70~90% compared with the control group. The capture efficiency of turbid particles decreased with increased input turbidity flux. The result of experimental run on how turbid particles are separated in the mat channel shows that settling, filtration and attachment are the main processes. Meanwhile, turbidity was diffused from the channel bottom due to turbidity gradient before and after mat zone. The particle size before mat zone was lightly coarser than that after mat zone.

ENHANCED COAGULATION: DETERMINATION OF CONTROLLING CRITERIA AND AN EFFECT ON TURBIDITY REMOVAL

  • Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.105-111
    • /
    • 2005
  • The applicability of the USEPA's (United States Environmental Protection Agency) three criteria of enhanced coagulation (criterion 1-TOC level less than 2 mg/l. before chlorination; criterion II-% requirement of TOC removal; criterion III-point of diminishing return) for Korean waters was evaluated in this study. This study also investigated an effect of enhanced coagulation on turbidity removal, and attempted to identify the best coagulant for enhanced coagulation. Three different waters were used in this study: one river water and two lake waters. five different coagulants were used: alum, liquid alum, PACl, ferric chloride with and without water. Results of this study showed that all three criteria were achievable for the tested waters. For these waters, controlling criterion was found to be different depending upon raw water characteristics. When initial Toe level was low(< 4 mg/L), criterion I (< 2 mg/L) could be the controlling criterion. As TOC level increased, criterion II (% TOC removal) became the controlling criteria. It was possible to achieve different goals of turbidity and TOC removals. Although the optimum region of TOC removal was more acidic than that of turbidity removal, there was no conflict between these two removals. The best coagulant was found to be different depending upon the evaluation tool: maximum and optimum removal. ferric chloride was more effective than alum in terms of the maximum TOC removal, while Al-based coagulant such as alum or PACl was the best coagulant in terms of the optimum TOC removal.

COD, SS and Turbidity Removal of Paper Wastewater Using DAE(Dissolved Air Flotation) (DAF(Dissolved Air Flotation)를 이용한 제지폐수의 COD, SS 및 탁도 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.246-253
    • /
    • 2005
  • The supernatant treatment of recovery process of raw materials of paper plant was studied using DAF (Dissolved Air Flotation) system. We investigated the removal efficiency (COD, SS and turbidity) of the DAF process. The effects of parameters such as A/S ratio, pressure, flotation conditions, coagulant concentration, mixing conditions, size and ratio of packing and nozzle type were examined. The results showed that the optimum A/S ratio and pressure were 0.058 and 4.5-5 atm, respectively. Injection times of pressurized water around 30 s and flotation times around 10 min appeared to be optimal for the DAF operation. Anion polymer addition improved the removal of COD, SS and turbidity. The smaller size and the more packing ratio were enhanced the removal efficiencies. The order of performance of nozzle was full cone > flat > assemble type.

Measurement of turbidity using Infrared Ray (적외선 광원을 이용한 탁도 측정)

  • Youm, Sungkwan;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.263-264
    • /
    • 2021
  • The importance of evaluation and management of drinking water quality is emerging among the impacts of industrial changes and environmental destruction. Currently, the turbidity-related laws in Korea are regulated, and the low-concentration turbidity of 1.0 NTU or less must be maintained for process management, and control technology remains a necessary task. In this study, absorbance experiments according to turbidity were conducted using 470nm, 670nm, and 850nm, and water quality was measured using a light source of 850nm and a light receiving device of 820nm.

  • PDF

SHIHMEN SEDIMENT PREVENTION DIVERSION TUNNEL PLANNING AND DESIGN

  • Ho-Shong Hou;Ming-Shun Lee;Percy Hou
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.168-172
    • /
    • 2009
  • Shihmen reservoir was started in May 1963. The main purposes of Shihmen reservoir are for agriculture, power supply, flood control and tourism. Shihme Asn dam is an earth dam. Its crown height is 133m above mean sea level, with length 360 m, watershed 763.4 km2, and maximum volume 309 million cms. Turbidity in Shihmen dam was severely affected by typhoons Aere (2004) and Masa (2005). Increased deposition after Aere was 28 million cms. Turbidity at Shihmen Canal Inlet is 3000 NTU (Nephelometry Turbidity Unit). Sediment sluicing strategies for downstream channel are demanded. Therefore, diversionary sediment preventing channel is planned in the upstream of Shihmen reservoir. Finally, turbid flow in tunnel channel is bypassed and diverted its flow down to downstream.

  • PDF

Studies on the Determination of Optimal Flocculation Condition in Wastewater of Recycled Paper (재생지 폐수의 최적 응집조건 결정에 관한 연구)

  • 이성호;임택준;조준형
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.44-51
    • /
    • 2001
  • Sedimentation characteristics such as SS, $BOD_5$, COD removal efficiency of waste water in the toilet paper mill using milk carton were examined. Optimum dosage of coagulant, rapid mixing time and slow mixing time were determined by turbidity, SS, COD, $BOD_5$ and then equation for treatment efficiency was suggested. Mechanical strength of floc was determined by turbidity. For the coagulant, polyacrylamide (PAM) is more efficient for removing pollution than the aluminium sulfate. Effective mixing ratios of PAM and aluminum sulfate to remove pollution are 70:30 and 30:70. The lowest turbidity was showed when rapid mixing at 300 rpm after coagulant injection was applied. That which indicates the highest point of flocs mechanical strength.

  • PDF

Simulation of Turbid Water in the Stratified Daecheong Reservoir during Gate Operation (댐 배수조작에 따른 저수지내 탁수변화 모의 - 대청댐을 대상으로 -)

  • Lee, Jae-Yil;Seo, Se-Deok;Lee, Gyu-Sung;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.377-386
    • /
    • 2009
  • Due to severe flooding, the long-term residence of turbidity flows within the stratified Daecheong Reservoir have lengthened. A long-term residence of turbidity flows within the stratified Daecheong Reservoir after floods has been major environmental issue. The objective of this study was to assess the impact to water supply from the hydrodynamics and turbidity outflow. Two gate operation scenarios were investigated. Scenario A refers to gate operations according to rainfall events, and scenario B refers to gate operations according to inflow. From the results of secenario A, the SS concentrations decreased from 0.44mg/l to 0.54mg/l at the front of the dam, whereas SS concentrations increased from 0.24mg/l to 1.24mg/l at the intake points at Munhi and Daejeon. From the results of scenario B, the SS concentrations decreased from 0.61mg/l to 0.83mg/l at the front of Dam; howeve, SS concentrations also decreased from 0.16mg/l to 0.48mg/l at the intake points at Munhi and Daejeon. It seems that it may be more efficient to control turbidity by creating additional outflows of generated discharge after intensive rainfalls than not.

The Estimation of the Coagulant on Method of Lime Input in the Water Treatment Plant at High Turbidity (고탁도시 소석회 투입방법에 따른 정수장 응집제의 효율 평가)

  • Bang, Mi Ran;Lim, Bong Su;Bae, Byung Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.107-117
    • /
    • 1998
  • In order to removal turbidity at high turbidity, this study was carried to evaluate the coagulants(Alum, PACl, PACS) that was suited the characteristics of raw water in water treatment plants and to determinate the optimum method of lime feed. When the optimum coagulant was selected the organic matter removal was also investigated as $UV_{254}$. PACl, lime first feed had the highest turbidity removal efficiency rate as above 99.1% and then $UV_{254}$ removal rate was obtained over than 88.0%. If you had the necessary of the lime feed, among the method of lime feed time interval feed largely was improved than simultaneous feed. Also, lime feed dose had about 1/5 of coagulants dose in case of Alum and PACl, but always PACS should be considerated lime dose.

  • PDF

Characteristics of High-Rate Filtration with Filtration Aids (급속여과공정에서의 여과보조제 사용에 따른 여과특성)

  • Ahn, Jong-Ho;Yoon, Jae-Heung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.260-270
    • /
    • 2000
  • The objective of this study is to evaluate the effect of filter aids in the dual-media rapid filtration. Paper-filter tests were conducted to determine the proper dosages of coagulant and filter aid, and pilot plant tests using two dual-media filter columns were performed for a variety of filtration rates. Using a filter aid (non-ionic polymer), the maximum feasible filtration rate is 480m/day, while turbidity is less than 0.3 NTU and filter run-time is about 70 hours. It is possible to increase the filtration rate up to 360 m/day for keeping the turbidity less than 0.1 NTU. Turbidity increases for the filtration rate greater than 360m/day. In general, the quality of filtered water with a filter aid is stable, while the filter maintains a sufficient filter run-time for a maximum allowable head loss. Particularly, the initial breakthrough can be effectively controlled. The use of a filter aid may be one of the methods applicable if the turbidity of filtered water is required to be improved or if the filter breakthrough limits filter run-time.

  • PDF