• Title/Summary/Keyword: and symmetric group

Search Result 204, Processing Time 0.028 seconds

Design of the UWB BandPass Filter of Microstrip CRLH-TL Metamaterial Cell Type with Improved Rejection Performance (저지특성이 향상된 CRLH-TL Metamaterial 쎌 형 UWB 대역통과여파기의 설계)

  • Kahng, Sung-Tek;Ju, Jeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.47-52
    • /
    • 2008
  • In order to enhance the rejection performance of the UWB bandpass filter based on the Composite Right- and Left-Handed Transmission-line(CRLH-TL) Metamaterial cell, we propose the lowpass filtering concept that fits into the design objectives : Keeping metamaterial property and miniaturization. So the bandpass filter itself is made far less than a quarter-wavelength and a pair of symmetric comprises lowpass filtering blocks are placed before and after the center CRLH filter which comprises tile interdigitated coupled lines and short-circuited stob. The design result will show the size of 'guided wavelength/8', the fractional bandwidth over 100%, the insertion loss much less than 1 dB, a flat Group-Delay and a good return loss performance, as expected.

An Optimal Algorithm for the Sensor Location Problem to Cover Sensor Networks

  • Kim Hee-Seon;Park Sung-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.17-24
    • /
    • 2006
  • We consider the sensor location problem (SLP) on a given sensor field. We present the sensor field as grid of points. There are several types of sensors which have different detection ranges and costs. If a sensor is placed in some point, the points inside of its detection range can be covered. The coverage ratio decreases with distance. The problem we consider in this thesis is called multiple-type differential coverage sensor location problem (MDSLP). MDSLP is more realistic than SLP. The coverage quantities of points are different with their distance form sensor location in MDSLP. The objective of MDSLP is to minimize total sensor costs while covering every sensor field. This problem is known as NP-hard. We propose a new integer programming formulation of the problem. In comparison with the previous models, the new model has a smaller number of constraints and variables. This problem has symmetric structure in its solutions. This group is used for pruning in the branch-and-bound tree. We solved this problem by branch-and-cut(B&C) approach. We tested our algorithm on about 60 instances with varying sizes.

  • PDF

Certain exact complexes associated to the pieri type skew young diagrams

  • Chun, Yoo-Bong;Ko, Hyoung J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.265-275
    • /
    • 1992
  • The characteristic free representation theory of the general linear group has found a wide range of applications, ranging from the theory of free resolutions to the symmetric function theory. Representation theory is used to facilitate the calculation of explicit free resolutions of large classes of ideals (and modules). Recently, K. Akin and D. A. Buchsbaum [2] realized the Jacobi-Trudi identity for a Schur function as a resolution of GL$_{n}$-modules. Over a field of characteristic zero, it was observed by A. Lascoux [6]. T.Jozefiak and J.Weyman [5] used the Koszul complex to realize a formula of D.E. Littlewood as a resolution of schur modules. This leads us to further study resolutions of Schur modules of a particular form. In this article we will describe some new classes of finite free resolutions associated to the Pieri type skew Young diagrams. As a special case of these finite free resolutions we obtain the generalized Koszul complex constructed in [1]. In section 2 we review some of the basic difinitions and properties of Schur modules that we shall use. In section 3 we describe certain exact complexes associated to the Pieri type skew partitions. Throughout this article, unless otherwise specified, R is a commutative ring with an identity element and a mudule F is a finitely generated free R-module.e.

  • PDF

Variation in IR and Raman Spectra of CD3CN upon Solvation of InCl3 in CD3CN: Distinctive Blue Shifts, Coordination Number, Donor-Acceptor Interaction, and Solvated Species

  • Cho, Jun-Sung;Cho, Han-Gook
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.803-809
    • /
    • 2009
  • Notable blue shifts of the ν2 $C{\equiv}N$ stretching, $_{v4}$ C-C stretching and $_{v8}$ CCN deformation bands of $CD_3CN$ are observed upon solvation of $InCl_3$, resulting from the donor-acceptor interaction. The Raman spectrum in the $_{v2}$ region shows further details; at least two new bands emerge on the blue side of the $_{v2}$ band of free $CD_3CN$, whose relative intensities vary with concentration, suggesting that there exist at least two different cationic species in the solution. The strong hydrogen bonds formed between the methyl group and ${InCl_4}^-$ result in a large band appearing on the red side of the ν1 $CD_3$ symmetric stretching band. The solvation number of $InCl_3$, determined from the Raman intensities of the $C{\equiv}N$ stretching bands for free and coordinated $CD_3CN$, increases from $\sim$1.5 to $\sim$1.8 with decreasing concentration.

Topology Aggregation Schemes for Asymmetric Link State Information

  • Yoo, Young-Hwan;Ahn, Sang-Hyun;Kim, Chong-Sang
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.46-59
    • /
    • 2004
  • In this paper, we present two algorithms for efficiently aggregating link state information needed for quality-of-service (QoS) routing. In these algorithms, each edge node in a group is mapped onto a node of a shufflenet or a node of a de Bruijn graph. By this mapping, the number of links for which state information is maintained becomes aN (a is an integer, N is the number of edge nodes) which is significantly smaller than N2 in the full-mesh approach. Our algorithms also can support asymmetric link state parameters which are common in practice, while many previous algorithms such as the spanning tree approach can be applied only to networks with symmetric link state parameters. Experimental results show that the performance of our shufflenet algorithm is close to that of the full-mesh approach in terms of the accuracy of bandwidth and delay information, with only a much smaller amount of information. On the other hand, although it is not as good as the shufflenet approach, the de Bruijn algorithm also performs far better than the star approach which is one of the most widely accepted schemes. The de Bruijn algorithm needs smaller computational complexity than most previous algorithms for asymmetric networks, including the shufflenet algorithm.

A Multilevel Key Distribution using Pseudo - random Permutations (의사 랜덤치환을 이용한 다중레벨 키분배)

  • Kim, Ju-Seog;Shin, Weon;Lee, Kyung-Hyune
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2493-2500
    • /
    • 1997
  • We propose a new key management scheme for multiuser group which is classified as hierarchical structure (sometimes it is called a multilevel security hierarchy) in the symmetric key cryptosystem. The proposed scheme is based on the trapdoor one-way permutations which are generated by the pseudo-random permutation algorithm, and it is avaliable for multilevel hierarchical structure composed of a totally ordered set and a partially ordered set, since it has advantage for time and storage from an implemental point of view. Moreover, we obtain a performance analysis by comparing with the other scheme, and show that the proposed scheme is very efficient for computing time of key generation and memory size of key storage.

  • PDF

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

Properties of Synthesis (BaSr)$(CoFe)O_3$ Cathode for IT-SOFC by GNP (GNP 법을 이용한 저온형 SOFC용 (BaSr)$(CoFe)O_3$ 공기극의 제조 및 특성 평가)

  • Lee, Mi-Jai;Moon, Ji-Woong;Kim, Sei-Ki;Ji, Mi-Jung;Hwang, Hae-Jin;Lim, Yong-Ho;Choi, Byung-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.51-54
    • /
    • 2006
  • Cathode material, $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$, for low temperature SOFC was prepared by the glycine-nitrate synthesis process (GNP). The characteristics of the synthesized powders were studied with controlling pH of a precursor. The synthesis BSCF powders with pH were agglomeration state and calcinations temperature has not influence on particles. Highly acidicprecursor solution increased a single phase forming the temperature. Also, synthesis BSCF powder was show result for thermal analysis and alteration of difference crystal with pH. It is considered that Ba and Sr cannot complex by carboxylic acid group of glycine, because under highly acidic condition the caboxylic group mainly combined with $H^+$ insead of alkali and alkaline earth cations. In case of using precursor solution with pH $2{\sim}3$, a single perovskite phase was obtained at $1000^{\circ}C$. Polarization resistance of $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ was measured by AC impedance spectroscopy from the two electrode symmetric cell. Area specific resistance of the $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ air electrode at $500^{\circ}C\;and\;600^{\circ}C$ were $0.96{\Omega}?cm^2$ and $0.16{\Omega}?cm^2$, respectively.

  • PDF

Polarization Resistance of (Ba0.5Sr0.5)0.99Co0.8Fe0.2O3-δ Air Electrode Synthesized by Glycine-Nitrate Process (Glycine-Nitrate 법으로 제조한 (Ba0.5Sr0.5)0.99Co0.8Fe0.2O3-δ 공기극의 분극저항)

  • Moon, Ji-Woong;Lim, Yong-Ho;Oh, You-Keun;Lee, Mi-Jai;Choi, Byung-Hyun;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.800-807
    • /
    • 2005
  • Cathode material, $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$, for low temperature SOFC was prepared by the Glycine-Nitrate synthesis Process (GNP). Characteristics of the synthesized powders were studied with controlling the pH of a precursor solution. Highly acidic precursor solution increased a perovskite forming temperature. It is considered that Ba and Sr cannot complex by carboxylic acid group of glycine, because under highly acidic condition the caboxylic group mainly combined with H+ insead of alkaline earth cations. A lack of bond between cations and glycine resulted in selective precipitation of the elements during evaporation of the precursor solution. In case of using precursor solution with pH %2\~3$, a single perovskite phase was obtained at $1000^{\circ}C$. Polarization resistance of $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$ was measured by AC impedance spectroscopy from the two electrode symmetric cell. Area specific resistance of the $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-\delta}$ air electrode at $500^{\circ}C\;and\;600^{\circ}C$ were $0.96{\Omega}{\cdot}cm^2\;and\;0.16{\Omega}{\cdot}cm^2$, respectively.

Study on the Pervaporation Characteristic of Water-alcohol Mixtures through Aromatic Polyetherimide Membranes : I. Pervaporation through Structure Change of Symmetric Dense and Asymmetric Structure Membranes (방향계 폴리에테르이미드막의 물-알콜 혼합액의 투과증발 특성에 관한 연구 : I.구조 변화에 따른 투과증발)

  • Kim, S.G.;Jegal, J.G.;Lee, K.-H.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.945-953
    • /
    • 1997
  • Aromatic polyetherimide membranes were prepared by dry/wet phase inversion method and investigated regarding the pervaporation characteristic of water-alcohol mixtures by using the permselective property of imide group and the structure modification of skin layer of the membrane. The membrane selectivity increased with the reaction time of surface-modification, to some extent, and the density of top layer tends to increases with increasing the reaction time. In the case of dense membrane, the separation factor was 160 and 2000 for 90wt% ethanol mixture and 90wt% isopropanol solution, respectively, which implies that aromatic polyetherimide has a high permselectivity. The temperature dependence of permeation flux seems to follow an Arrhenius type at the temperature range of ($40^{\circ}C-70^{\circ}C$).

  • PDF