• Title/Summary/Keyword: and receptors

Search Result 2,484, Processing Time 0.04 seconds

Study on Relaxing Effect of Oxybutynin on the Contractile Response of Arterial Smooth Muscle (동맥근 수축에 대학 Oxybutynin의 이완효과에 관한 연구)

  • Ko, Jae-Ki;Baik, Yung-Hong
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.93-101
    • /
    • 1988
  • Pharmacological actions of an antispasmodic agent, oxybutynin were investigated in the isolated procine coronary arteries. The coronary rings were contracted by acetylcholine (ACh) and KCl in a dose-dependent fashion. The ACh-induced contractions were signifcantly potentiated by removal of endothelium and $EC_{50}=0.52\;{\mu}M$ of intact endothelial rings was about 2 times greater than $EC_{50}=0.28\;{\mu}M$ of rings without the endothelium. These results suggest that the endothelium plays an inhibitory role in ACh-induced contraction. Oxybutynin and atropine inhibited dose-dependently $1.0\;{\mu}M$ ACh-induced contraction and atropine inhibited dose-dependently $1.0\;{\mu}M$ ACh-induced contraction and the $IC_{50s}$ were 11.0 nM and 0.47 nM, respectively. Atropine did not affect 35 mM KCl-induced contraction but oxybutynin inhibited the contraction to the basal tension in a dose-dependent manner. The $IC_{50}$ of oxybutynin on the KCl-induced contraction was $49.7\;{\mu}M$. The dose-response curve to ACh was parallelly shifted to the right by pretreating coronary rings with $IC_{50}$ of atropine (0.47 nM) or oxybutynin (11.0 nM) but the curve to KC1 was rightward shifted in a noncompetitive manner under pretreatment with $IC_{50}$ of oxybutynin $(49.7\;{\mu}M$). Oxybutynin inhibited $0.1\;{\mu}M$ Bay K 8644-induced contraction to the basal tension in a dose dependent manner, but $35\;{\mu}M$ histamine-induced contraction was inhibited to only 50e/e of the original level even in maximal concentration $(5{\times}10^{-4}M)$ of oxybutynin. These results suggest that oxybutynin causes antispasmodic action through sensitive blocking action on muscarinic receptors and inhibitory action on calcium influx in the procine coronary artery.

  • PDF

Mechanism of Inhibitory Effect of Imipramine on Isolated Rat Detrusor Muscle in Relation to Calcium Modulation (흰쥐 적출 방광 배뇨근의 수축성에 대한 Imipramine의 작용과 Calcium동원 기전과의 관계)

  • Lee, Jong-Bum;Yoo, Kae-Joon;Ha, Jeoung-Hee;Kwon, Oh-Cheol;Lee, Kwang-Youn;Kim, Won-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.81-89
    • /
    • 1992
  • Enuresis is a common voiding disorder among children. There are several therapeutic regimens for the disorder available today; behavioral therapies, psychotherapy, bladder training, sleep interruption, hypnosis and drug therapy. Recently, the efficacy of drug therapy has been acknowledged, particularly of antidepressants. Among the tricyclic antidepressants, imipramine is most frequently employed for the treatment of enuresis. Present study was undertaken to investigate the mechanism of imipramine on the contractility of urinary bladder in relation to the calcium modulation using isolated strips of rat detrusor urinae. 1. The electric fileld stimulation-induced contraction was abolished by imipramine, but partially inhibited by atropine. 2. Imipramine reduced the basal tone and diminished the phasic activity of detrusor muscle concentration-dependently, which was similar to that of diltiazem, a calcium channel blocker. 3. Imipramine suppressed the maximal responses and shifted the concentration-response curves of bethanechol and ATP to right. 4. Imipramine inhibited the calcium-induced recovery of tension in calcium-free physiologic salt solution (PSS) with a mode of action similar to that of diltizaem. 5. A23187, a calcium ionophore recovered the basal tone which had been reduced by imipramine in normal PSS. 6. In calcium-free PSS, A23187 could recover the abolished basal tone with the pretreatment of imipramine, but it exerted a partial recovery with the pretreatment of TMB-8, an inhibitor of intracellular calcium release. Based on these results, it is suggested that the inhibitory action of imipramine on the detrusor muscle exerted in part by blockade of the muscarinic and purinergic receptors, and interference with the influx of extracellular calcium, but not with the release of intracellular stored calcium, is involved in its mechanism of action.

  • PDF

The Effects of Phenethyl Isothiocyanate on Nuclear Factor-κB Activation and Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression Induced by Toll-like Receptor Agonists (Phenethyl Isothiocyanate가 Toll-like Receptor Agonists에 의해 유도된 Nuclear Factor-κB 활성과 Cyclooxygenase-2, Inducible Nitric Oxide Synthase 발현에 미치는 효과)

  • Kim, Soo-Jung;Park, Hye-Jeong;Shin, Hwa-Jeong;Kim, Ji-Soo;Ahn, Hee-Jin;Min, In-Soon;Youn, Hyung-Sun
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.279-283
    • /
    • 2011
  • Toll-like receptors (TLRs) play an important role in induction of innate immune responses. The activation of TLRs triggers inflammatory responses that are essential for host defense against invading pathogens. Phenethyl isothiocyanate (PEITC) extracted from cruciferous vegetables has an effect on anti-inflammatory therapy. Dysregulated activation of nuclear factor-${\kappa}$B (NF-${\kappa}$B), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) has been shown to play important roles in the development of certain inflammatory disease. To evaluate the therapeutic potential of PEITC, NF-${\kappa}$B activation and COX-2 and iNOS expression induced by lipopolysaccharide (LPS, TLR4 agonist), polyinosinic-polycytidylic acid (Poly[I:C], TLR3 agonist), 2 kDa macrophageactivating lipopeptide (MALP-2, TLR2 and TLR6 agonist) or oligodeoxynucleotide 1668 (ODN1668, TLR9 agonist) were examined. PEITC inhibits the activation of NF-${\kappa}$B induced by LPS or Poly[I:C] but not by MALP-2 or ODN1668. PEITC also suppressed the iNOS expression induced by LPS or Poly[I:C]. However, PEITC did not suppress COX-2 expression induced by LPS, Poly[I:C], MALP-2, or ODN1668. These results suggest that PEITC has the specific mechanism for antiinflammatory responses.

Changes in $A_{1}$, Adenosine Receptor-Adenylyl Cyclase System of Rat Adipocytes Fellowing Induction of Experimental Diabetes by Streptozotocin Treatment (Streptozotocin으로 당뇨병을 유발시킨 쥐의 지방세포에 나타나는 $A_{1}$, Adenosine Receptor-Adenylyl Cyclase System의 변화)

  • Park, Kyung-Sun;Lee, Myung-Soon;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.97-105
    • /
    • 1993
  • Adenosine receptors in rat adipose tissues have been reported to be of $A_{1}$ subclass, and their stimulation leads to inhibition of adenylyl cyclase, resulting in inhibition of lipolysis. In the present study we investigated changes in $A_{1}$ adenosine receptor-adenylyl cyclase system of adipocytes following induction of experimental diabetes in rats. One week following experimental diabetes were induced by intravenous injection of streptozotocin (50 mg/kg body wt.), adipocytes from rats $(170{\sim}230g)$ fed ad libitum were isolated using collagenase. When adipocytes were incubated for 1 h with 1 unit/ml adenosine deaminase and $1\;{\mu}M$ isoproterenol, and assayed for glycerol formation, it was found that the inhibition of lipolysis in diabetic adipocytes by $(-)-N^{6}-(R-phenylisopropyl)adenosine$ (PIA), an $A_{1}$, adenosine receptor agonist, was twice that of control adipocytes. In an effort to delineate the mechanism(s), $[^{3}H]PIA$ binding to adipocytic membranes from diabetic and control rats were determined. Neither the affinities nor numbers of $A_{1}$ adenosine receptor were significantly different from each other (Best fit parameters for the one-site model are: $K_{d}=0.51{\pm}0.09nM$ and $B_{max}=1.60{\pm}0.12\;pmoles/mg$ protein for control membranes; $K_{d}=0.54{\pm}0.21\;nM$ and $B_{max}=1.72{\pm}0.31\;pmoles/mg$ protein for diabetic membranes). However, the inhibiton by PIA of the isoproterenol-stimulated adenylyl cyclase activities was found to be 1.9 times higher in adipocytic membranes from diabetic rats than those from controls. These results suggest that the increased sensitivity of inhibition of lipolysis to PIA in adipocytic membranes from diabetic rats is due to changes in signal transduction pathways, rather than alterations of $A_{1}4 adenosine receptor molecules themselves.

  • PDF

Adrenomedullin Deficiency Increases the Susceptibility of Liver Fibrosis Induced by CCl4 (아드레노메둘린 결핍은 사염화탄소로 유도된 간경화 감수성을 상승시킴)

  • Ji, Ae-Ri;Hwang, Meeyul;Kim, Ah-Young;Lee, Eun-Mi;Lee, Eun-Joo;Lee, Myeong-Mi;Sung, Soo-Eun;Kim, Sang-Hyeob;Park, Jin-Kyu;Jeong, Kyu-Shik
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.463-472
    • /
    • 2015
  • Adrenomedullin (AM) is a peptide expressed in all body tissues, and its related receptors are increased in liver fibrosis. In this study, we evaluated the effect of AM deficiency on liver fibrogenesis induced by $CCl_4$ using AM heterozygous (HT) mice. The animals received a single injection of $CCl_4$ or olive oil for the acute experiment, and received $CCl_4$ or olive oil three times a week for 6 weeks for the chronic experiment. Fibrosis was accessed using histopathological analysis and the western blot. The AM HT mice showed mild pericentrilobular degeneration when compared to the AM wild type (WT) mice. In the acute experiment, there was no significant difference between the AM WT and AM HT mice. However, in the chronic experiment, the $CCl_4$-treated AM HT mice showed more severe liver fibrosis than that of the CCl4-treated AM WT mice. The AST and ALT levels of the AM HT $CCl_4$ group were higher than those of the AM WT CCl4 group. Additionally, the collagen deposition, $\alpha$- SMA protein and TGF-$\beta$ protein were increased in the AM HT $CCl_4$ group when compared to the AM WT $CCl_4$ group. The AM HT mice also exhibited severe lipid peroxidation through the GSH decrement. Taken together, our data suggest that AM deficiency increases the susceptibility to liver fibrosis induced by $CCl_4$, indicating a novel therapeutic target for patients with liver fibrosis.

Resveratrol Ameliorates NMDA-induced Mitochondrial Injury by Enhanced Expression of Heme Oxygenase-1 in HT-22 Neuronal Cells (NMDA를 처리한 HT-22 신경세포에서 미토콘드리아 손상을 완화하는 레스베라트롤의 보호 효과와 헴 산화효소-1의 역할)

  • Kang, Jae Hoon;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • N-methyl-D-aspartate (NMDA) receptors have received considerable attention regarding their involvement in glutamate-induced neuronal excitotoxicity. Resveratrol has been shown to exhibit neuroprotective effects against this kind of overactivation, but the underlying cellular mechanisms are not yet clearly understood. In this study, HT-22 neuronal cells were treated with NMDA in Mg2+-free buffer and subsequently used as an experimental model of glutamate excitotoxicity to elucidate the mechanisms of resveratrol-induced neuroprotection. We found that NMDA treatment causes a drop in MTT reduction ability, disrupts inside-negative transmembrane potential of mitochondria, depletes cellular ATP levels, and stimulates intracellular ROS production. Double fluorescence imaging studies demonstrated an increased formation of mitochondrial permeability transition (MPT) pores accompanied by apoptotic cell death, while cobalt protoporphyrin and bilirubin showed protective effects against NMDA-induced mitochondrial injury. On the other hand, zinc protoporphyrin IX significantly attenuated the protective effects of resveratrol which was itself shown to enhance heme oxygenase-1 (HO-1) mRNA and protein expression levels. In cells transfected with HO-1 small interfering RNA, resveratrol failed to suppress the NMDA-induced effects on MTT reduction ability and MPT pore formation. The present study suggests that resveratrol may prevent mitochondrial injury in NMDA- treated HT-22 cells and that enhanced expression of HO-1 is involved in the underlying cellular mechanism.

Lysophosphatidic Acid Stimulates SKOV-3 Cell Migration through the Generation of Reactive Oxygen Species via the mTORC2/Akt1/NOX Signaling Axis (리소포스타티드산은 SKOV-3 난소암세포의 mTORC2/Akt1/NOX 신호전달 기전을 통해 활성산소를 형성하고 이를 통해 세포의 이동을 촉진)

  • Eun Kyoung Kim;Seo Yeon Jin;Jung Min Ha;Sun Sik Bae
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.129-137
    • /
    • 2023
  • Reactive oxygen species (ROS) play an essential role in a variety of cellular physiological phenomena. The present study assessed the signaling axis that mediates the lysophosphatidic acid (LPA)-induced migration of SKOV-3 cells. Insulin-like growth factor-1 (IGF-1) stimulated SKOV-3 cell migration in a time- and dose-dependent manner. Similarly, LPA stimulated SKOV-3 cell migration and the phosphorylation of Akt in a time- and dose-dependent manner. The pharmacological inhibition of LPA receptors (LPA1/LPA3) significantly suppressed LPA-induced SKOV-3 cell migration. However, IGF-1-induced SKOV-3 cell migration was not affected by the inhibition of LPA1 and LPA3. Pharmacological inhibition of phosphoinositide 3-kinase (PI3K) or Rho-associated kinase (ROCK) significantly suppressed LPA-induced migration, whereas the inhibition of MAPK kinase (MEK) had no effect. Inhibition of PI3K or ROCK completely suppressed LPA-induced ROS generation, and suppression of nicotinamide adenine dinucleotide phosphate oxidase (NOX) or chelation of ROS by N-acetylcysteine (NAC) blocked LPA-induced SKOV-3 cell migration. LPA-induced ROS generation was suppressed by silencing Rictor or Akt1 but not Raptor or Akt2. Silencing Rictor or Akt1 significantly suppressed LPA-induced SKOV-3 cell migration, whereas silencing Raptor or Akt2 had no effect. Finally, the overexpression of the constitutively active form Akt1 (CA-Akt1) significantly enhanced the LPA-induced migration of SKOV-3 cells. Given these results, we suggest that LPA stimulates SKOV-3 cell migration by ROS generation, which is mediated by the mTORC2/Akt1/NOX signaling axis.

Responsiveness of Muscarinic and Alpha Adrenergic Activation on Endothelial Cell in Isolated Canine Renal Arteries (개 신동맥 내피세포의 무스카린성 및 알파 아드레날린성 수용체에 대한 작용)

  • Chung, Soo-Youn;Chang, Ki-Churl;Lim, Jung-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.43-51
    • /
    • 1989
  • Responsiveness of muscarinic and alpha adrenoceptor activation on endothelial cells was studied in isolated canine renal artery rings. Ach (10-100 nM), dose dependently, relaxes endothelial intact rings precontracted with phenylephrine ($IC_{50}$ of Ach was 34.5 nM). Selective mechanical destruction of the endothelium transformed the activity of this substance from vasodilatation to vasoconstriction. Acetylcholine induced relaxations could be selectively inhibited competitively by atropine, but could not be inhibited by cyclooxygenase inhibitor. Methylene blue, however, an inhibitor of soluble guanylate cyclase activity, inhibited Ach as well as sodium nitroprusside (SNP) induced relaxation. Relaxation produced by prostacyclin was not modified by methylene blue. On the other hand, alpha adrenoceptor agonist did not relax but contract canine renal artery rings possessing an intact intima precontracted with U-46619. Clonidine, however, selective alpha-2 adrenergic agonist, is more susceptible than phenylepherine, selective alpha-1 adrenergic agonist, to the inhibitory effect of contraction. These results suggest that in canine renal artery rings, 1) muscarinic receptor is responsible for releasing endothelium dependent relaxation factor (EDRF). 2) alpha-1 and alpha-2 adrenergic receptors are present in canine renal artery. 3) relaxation via EDRF is antagonized by methylene blue, providing further evidence that EDRF acts through a cGMP mechanism.

  • PDF

Production of Nitric Oxide in Raw 264.7 Macrophages treated with Ganoderan, the ${\beta}-Glucan$ of Ganoderma lucidum (영지의 균사체성 ${\beta}-glucan$에 의한 Raw 264.7 대식세포의 Nitric Oxide생성)

  • Han, Man-Deuk;Lee, Eun-Sook;Kim, Young-Kweon;Lee, June-Woo;Jeong, Hoon;Yoon, Kyung-Ha
    • The Korean Journal of Mycology
    • /
    • v.26 no.2 s.85
    • /
    • pp.246-255
    • /
    • 1998
  • Ganoderan (GAN), an immunomodulating ${\beta}-glucan$ of G. lucidum, induces potent antitumor immunity in tumor-bearing mice. This study was set up to elucidate the ability of macrophage activation of GANs. GAN-treated Raw 264.7 macrophages showed enhanced production of nitric oxide (NO). The ability of GANs to produce NO was based on differences in chemical composition of GANs obtained from the mycelium on various carbon sources and mycelial fractionation. The highest NO production was observed in CW-AS-WS polysaccharide which was extracted from the mycelial wall. GAN-treated Raw 264.7 cells gave a 2-to 5-fold (24 hr) formation of NO levels compared with those treated with medium only. Partial removal of the protein in the extracellular GAN by TCA treatment did appreciably reduce its capacity to secrete NO. The mixture effect of GAN and LPS increased the nitric oxide secretion from RAW 264.7. The cell proliferation of GAN-treated Raw 264.7 cell tines inhibited as compared with its control. Of the culture supernatant of macrophage activated by GAN, the percentage of cytotoxicity against mouse leukemia L1210 cells was slightly dependent on the amount of NO in the culture supernatants of the activated-macrophages. These results indicate that the ${\beta}-glucan-related$ polysaccharides of the higher fungus activate macrophage and release nitric oxide. It also suggests that murine macrophages possess certain receptors for ${\beta}-anomeric$ glucans and play a critical role of ${\beta}-glucan-related$ tumor killing mechanism.

  • PDF

Effect of estrogen on growth hormone receptor expression of human periodontal ligament cell line (치주인대세포 배양에서 estrogen이 growth hormone receptor의 발현유도에 미치는 영향)

  • Hong, Sung-Gyu;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.441-452
    • /
    • 2000
  • The present studies were performed to investigate the interaction of $17{\beta}$-estradiol and human growth hormone(hGH) on the proliferation of human periodontal ligament(WDL) cell. The independent effects of $17{\beta}$ estradiol and hGH on hPDL cell proliferation were investigated and the effects of hGH on hPDL cell proliferation after $17{\beta}$-estradiol pre-treatment were also investigated. Lastly, the change of hGH receptor expression in hPDL cell after $17{\beta}$-estradiol pre-treatment were investigated. The obtained results were as follows; 1. The treatment of $17{\beta}$-estradiol or hGH had no significant effects on hPDL cell proliferation. 2. After pre-treatment of $17{\beta}$-estradiol, hGH stimulated the proliferation of the hPDL cell, regardless of hHG concentration. 3. Although there was not hGH receptor in the hPDL cell, hGH receptors were expressed in hPDL cell after more than 6 hours pre-treatment of $17{\beta}$-estradiol. 4. The effect of hGH on hPDL cell proliferation was related to the hGH receptor expression. $17{\beta}$-estradiol pre-treaaent contributed to the hGH effects on the hPDL cell by stimulating hGHR expression.

  • PDF