• Title/Summary/Keyword: and receptors

Search Result 2,484, Processing Time 0.03 seconds

Euphorbiae Immifusae Sensitizes Apoptosis of TRAIL-resistant Human Gastric Adenocarcinoma AGS Cells (지금초 추출물에 의한 TRAIL 저항성 인체위암세포의 세포사멸 유도)

  • Lee, Jae-Jun; Shin, Dong-Hyuk;Park, Sang-Eun;Kim, Won-Il;Park, Dong-Il;Choi, Yung-Hyun;Hong, Sang-Hoon
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.120-128
    • /
    • 2008
  • The death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/ Apo1L is a cytokine that activates apoptosis through cell surface death receptors. TRAIL has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. Euphorbiae humifusae Wind has been used in traditional Oriental medicine as a folk remedy used for the treatment of cancer. However, the mechanism responsible for the anticancer effects of E. humifusae not clearly understood. Here, we show that treatment with subtoxic doses of water extract of E. humifusae (WEEH) in combination with TRAIL induces apoptosis in TRAIL-resistant human gastric carcinoma AGS cells. Combined treatment with WEEH and TRAIL induced chromatin condensation and sub-G1 phase DNA content. These indicators of apoptosis were correlated with the induction of caspase activity that resulted in the cleavage of poly (ADP-ribose) polymerase. Combined treatment also triggered the loss of mitochondrial membrane potential. Furthermore, co-treatment with WEEH and TRAIL down-regulated the protein levels of the anti-apoptotic proteins such as Bcl-2, Bcl-xL, XIAP and cIAP-1. Although more study will be needed to examine the detailed mechanisms, this combined treatment may offer an attractive strategy for safely treating gastric adenocarcinomas and the results provide important new insights into the possible molecular mechanisms of the anticancer activity of E. humifusae.

Suggestion for Legal Definitions of Keywords on Soil Contamination Policies in Korea (토양환경보전법의 토양오염 관련 주요 용어의 정의 및 재정립에 관한 고찰)

  • Park, Yong-Ha;Yang, Jae-E.
    • Journal of Environmental Policy
    • /
    • v.4 no.1
    • /
    • pp.39-67
    • /
    • 2005
  • In order to properly define the terms such as soil, soil contamination, soil contamination site and remediation, which are the key terms under the Soil Environment Conservation Act(SECA) in Korea, we analyzed the legal definitions of the similar key words in legislations of the developed western countries. The selected countries were the United States of America, the United Kingdom, the Netherlands, Germany, and Denmark. The legal definitions of these keywords were very much diversified due to different levels of soil contamination, as well as different industrial, social, and legal backgrounds in each country. However, fair suggestions for definitions of the key terms in SECA were derived from the comparative analyses of these countries. First and foremost, SECA should provide a definition of 'soil' which includes a concept of the natural soil layer produced from soil mineralization processes. Groundwater and sublayer of the groundwater would. be excluded in the boundary of the soil with regards to the Groundwater Act of Korea. Definition of 'soil contamination' of SECA should include a concept of risk assessment(soil contaminants, pathway, and receptors), purpose of land use, and the acquired limitation levels of soil contaminants. Soil contamination activity either industrial or anthropogenic in SECA article2-1, could be substituted for a concept of soil risk assessment. Definition of 'soil contamination site' could derive from amalgamating the concepts of i) soil contamination in conjunction with contaminants, ii) risk assessment, iii) a concept of land use, and iv) knowing limitation of contamination site designation. Definition of 'remediation of contaminated site' should include the objective, intention, action, methodology and limit of the remediation. These suggested definitions would increase the efficacy of soil environment conservation policies, which includes the survey of the potentially contaminated area, remediation, and removal of the site.

  • PDF

Rab Effector EHBP1L1 Associates with the Tetratricopeptide Repeat Domain of Kinesin Light Chain 1 (Kinesin Light Chain 1 (KLC1)의 Tetratricopeptide Repeat (TPR) 도메인과 Rab effector, EHBP1L1의 결합)

  • Jeong, Young Joo;Park, Sung Woo;Kim, Sang-Jin;Kim, Mooseong;Urm, Sang-Hwa;Lee, Jung Goo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2020
  • Kinesin-1 is microtubule-dependent plus-end direct molecular motor protein essential for intracellular transport. It is a member of the kinesin superfamily proteins (KIFs) which transport cargo, including organelles, vesicles, neurotransmitter receptors, cell-signaling molecules, and protein complexes through interaction between its light chain subunit and the cargo. Kinesin light chain 1 (KLC1) is a non-motor subunit that associates with the kinesin heavy chain (KHC). Although KLC1 interacts with many different adaptor proteins and scaffolding proteins, its binding proteins have not yet been fully identified. We used the yeast two-hybrid assay to identify proteins that interact with the tetratricopeptide repeat (TPR) domain of KLC1, and found an interaction between KLC1 and EH domain-binding protein 1 like 1 (EHBP1L1). EHBP1L1 bound to the region containing all six TPR repeats of KLC1 and did not interact with KIF5B (a motor protein of kinesin 1) or KIF3A (a motor protein of kinesin 2) in the yeast two-hybrid assay. The carboxyl-terminus of the coiled-coil domain of EHBP1L1 is essential for interaction with KLC1. However, another EHBP1L1 isoform, EHBP1, did not interact with KLC1 in the yeast two-hybrid assay. KLC1 interacted with GST-EHBP1L1 and its coiled-coil domain but not with GST only. When co-expressed in HEK-293T cells, EHBP1L1 co-localized with KLC1 and co-immunoprecipitated with KLC1 and KIF5B but not KIF3A. These results suggest that kinesin 1 motor protein may transport EHBP1L1-associated cargo in cells.

Macrophage and Anticancer Activities of Feed Additives on β-Glucan from Schizophyllum commune in Breast Cancer Cells (치마버섯균 유래의 베타글루칸에 대한 사료첨가제로서의 대식세포 기능 활성 및 유방암 세포주에서의 항암효능 효과)

  • Lee, Jin-Seok;Lee, Seung-Ho;Jang, Yong-Man;Lee, Jong-Dae;Lee, Byoung-Hee;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.949-955
    • /
    • 2011
  • [ ${\beta}$ ]Glucan is a polysaccharide expressed on the cell walls of fungi. It is known that ${\beta}$-glucan is recognized by a family of C-type lectin receptors, dectin-1, which is expressed mainly on myeloid immune cells, including macrophages, neutrophils and dendritic cells. Raw 264.7 cells were treated with ${\beta}$-glucan from Schizophyllum commune. ${\beta}$-Glucan was not cytotoxic up to 400 ${\mu}g$/mL as measured by MTT assay. To measure the activity of macrophages, NO and TNF-${\alpha}$ assays were performed in Raw 264.7 cells. Treatment with ${\beta}$-glucan for 24 hr significantly increased production of NO and TNF-${\alpha}$ compared with control groups (p<0.05), indicating activation of macrophages. To measure inhibition of breast cancer cell proliferation, MTT assay was performed in MDA-MB-231 cells. Cell viability was significantly decreased in the group treated with 400 ${\mu}g$/mL of ${\beta}$-glucan for 48 hr (p<0.05) compared to the control group. However, tumor volume was decreased in the groups administered 200 ${\mu}g$ of ${\beta}$-glucan/mouse compared to the control group. These results indicate that ${\beta}$-glucan inhibits breast cancer cell growth through the induction of apoptosis.

Influence of Phenobarbital on the Circadian Rhythm of Opiate Receptor in Rat Brain (백서의 뇌내 Opiate 수용체의 일중 변동에 미치는 Phenobarbital의 영향)

  • Park, Yeoung-Gul;Kim, Kee-Won;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.128-141
    • /
    • 1985
  • To investigate the influence of phenobarbital sodium on the action of morphine and on the diurnal rhythms of both opiate receptor binding and ${\beta}-endorphin$ contents, the amount of specifically bound $(^3H)$-morphine and immunoreactive ${\beta}-endorphin$ were measured in the midbrain of phenobarbital-treated rats at 4h intervals in a day. Rats were housed and adapted to a controlled cycle of either 12 h light-12 h dark or 24 h constant dark. After 3 weeks of adaptation, 0.5 ml of physiological saline or phenobarbital sodium (20mg/kg/day, i.p.) were administered twice a day for 2 weeks. Highly significant diurnal rhythms of opiate receptor binding and ${\beta}-endorphin$ were present in rat midbrain. In control group, the peak of maximum $(^3H)$-morphine binding was observed at 22:00 h, whereas the peak of ${\beta}-endorphin$ content was found at 06:00 h. Even in the absence of time cues these diurnal rhythms persisted, but they were highly modified with respect to the wave form as well as differences in the timing of peak and nadir. In the phenobarbital-treated group, these diurnal rhythms were also modified in shape, phase and amplitude, as well as in timing of peak and nadir. In this group, 24 h mean of opiate receptor binding was significantly decreased, while the 24 h mean level of ${\beta}-endorphin$ content was highly increased. However, Kd values in all experimental groups did not change. This indicates that differences in binding were not due to changes in the affinity, but in the number of binding sites. Statistical analysis of regression line indicates that changes of receptor binding were closely correlated with the changes of ${\beta}-endorphin$ content. These results suggest that phenobarbital may influence the action of morphine by changing the number of opiate receptors and that the modification of diurnal rhythm of opiate receptor by the agent is possibly due to changes of ${\beta}-endorphin$ content.

  • PDF

Characterization and Cloning of the Gene Encoding Autoregulator Receptor Protein from Streptomyces longwoodensis (Streptomyces longwoodensis로부터 Autoregulator Receptor Protein 유전자의 클로닝 및 특성)

  • Yeo Soo-Hwan;Lee Sung-Bong;Kim Hyun-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.96-105
    • /
    • 2005
  • For screening of autoregulator receptor gene from Streptomyces longwoodensis, PCR was performed with primers of receptor gene designed on the basis of amino acid sequences of autoregulator receptor proteins with known function. PCR products were subcloned into the BamHIsite of pUC19 and transformed into the E. coli $DH5{\alpha}$. The isolated plasmid from transformant contained the fragment of 100 bp, which was detected on $2\%$ gel after BamHI treatment. The insert, 100 bp PCR product, was confirmed as the expected internal segment of gene encoding autoregulator receptor protein by sequencing. Southern and colony hybridizations with the 100 bp fragment as a probe allowed to select a genomic clone of S. longwoodensis, pSLT harboring a 4.4 kb SphI fragment. Nucleotide sequencing analyses revealed a 651 bp open reading frame(ORF) were isolated protein showing moderate homology ($35{\sim}46\%$) with the ${\Gamma}$-butyrolactone autoregulator receptors from Streptomyces sp., and this ORF was named sltR The sltR/pET-17b plasmid was constructed to overexpress the recombinant SltR protein (rSltR) in E. coli BL21 (DE3)/pLysS, and the rSltR protein was purified to homogeneity by DEAE-Sephacel column chromatography, and DEAE-5PW chromatography (HPLC). The molecular mass of the purified rSltR protein was 55 kDa by HPLC gel-filtration chromatography and 28 kDa by SDS-PAGE, indicating that the rSltR protein is present as a dimer. A binding assay with tritium-labeled autoregulators revealed that the rSltR has clear binding activity with a A-factor type autoregulator as the most effective ligand.

MODULATION OF INTRACELLULAR pH BY $Na^+/H^+$ EXCHANGER AND $HCO_3^-$ TRANSPORTER IN SALIVARY ACINAR CELLS ($Na^+/H^+$ exchanger와 $HCO_3^-$ transporter에 의한 흰쥐 타액선 선세포내 pH 조절)

  • Park, Dong-Bum;Seo, Jeong-Taeg;Sohn, Heung-Kyu;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.352-367
    • /
    • 1998
  • Intracellular pH (pHi) plays an important role in the regulation of cellular processes by influencing the acitivity of various enzymes in cells. Therefore, almost every type of mammalian cell possesses an ability to regulate its pHi. One of the most prominent mechanisms in the regulation of pHi is $Na^+/H^+$ exchanger. This exchanger has been known to be activated when cells are stimulated by the binding of agonist to the muscarinic receptors. Therefore, the aims of this study were to compare the rates of $H^+$ extrusion through $Na^+/H^+$ exchanger before and during muscarinic stimulation and to investigate the possible existence of $HCO_3^-$ transporter which is responsible for the continuous supply of $HCO_3^-$ ion to saliva. Acinar cells were isolated from the rat mandibular salivary glands and loaded with pH-sensitive fluoroprobe, 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein(BCECF), for 30min at room temperature. Cells were attached onto the coverglass in the perfusion chamber and the changes in pHi were measured on the iverted microscope using spectrofluorometer. 1. By switching the perfusate from $HCO_3^-$-free to $HCO_3^-$-buffered solution, pHi decreased by $0.39{\pm}0.02$ pH units followed by a slow increase at an initial rate of $0.04{\pm}0.007$ pH units/min. The rate of pHi increase was reduced to $0.01{\pm}0.002$ pH units/min by the simultaneous addition of 1 mM amiloride and $100{\mu}M$ DIDS. 2. An addition and removal of $NH_4^+$ caused a decrease in pHi which was followed by an increase in pHi. The increase of pHi was almost completely blocked by 1mM amiloride in $HCO_3^-$-free perfusate which implied that the pHi increase was entired dependent on the activation of $Na^+/H^+$ exchanger in $HCO_3^-$-free condition. 3. An addition of $10{\mu}M$ carbachol increased the initial rate of pHi recovery from $0.16{\pm}0.01$ pH units/min to $0.28{\pm}0.03pH$ units/min. 4. The initial rate of pHi decrease induced by 1mM amiloride was also increased by the exposure of the acinar cells to $10{\mu}M$ carbachol ($0.06{\pm}0.008pH$ unit/min) compared with that obtained before carbachol stimulation ($0.03{\pm}0.004pH$ unit/min). 5. The intracellular buffering capacity ${\beta}1$ was $14.31{\pm}1.82$ at pHi 7.2-7.4 and ${\beta}1$ increased as pHi decreased. 6. The rate of $H^+$ extrusion through $Na^+/H^+$ exchanger was greatly enhanced by the stimulation of the cells with $10{\mu}M$ carbachol and there was an alkaline shift in the activity of the exchanger. 7. An intrusion mechanism of $HCO_3^-$ was identified in rat mandibular salivary acinar cells. Taken all together, I observed 3-fold increase in $Na^+/H^+$ exchanger by the stimulation of the acinar cells with $10{\mu}M$ carbachol at pH 7.25. In addition, I have found an additional mechanism for the regulation of pHi which transported $HCO_3^-$ into the cells.

  • PDF

Nelumbinis Semen Reverses a Decrease in $5-HT_{1A}$Receptor Binding Induced by Chronic Mild Stress, a Depression-like Symptom

  • Jang, Choon-Gon;Kang, Moon-Kyu;Cho, Jae-Han;Lee, Sun-Bok;Kim, Hyun-Taek;Park, Soon-Kwon;Lee, Jin-Woo;Park, Seong-Kyu;Hong, Moo-Chang;Shin, Min-Kyu;Shim, In-Sup;Bae , Hyun-Su
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1065-1072
    • /
    • 2004
  • Depression is associated with a dysfunctional serotonin (5-hydroxytryptamine; 5-HT) system. More recently, several lines of evidence suggest that an important factor in the development of depression may be a deficit in the function and expression of $5-HT_{1A}$ receptors. The present study assessed if Nelumbinis Semen (N. s.) had an anti-depression effect through reversing a decrease in $5-HT_{1A}$receptor binding in rats with depression-like symptoms induced by chronic mild stress. Using a $5-HT_{1A}$ receptor binding assay, with a specific $5-HT_{1A}$receptor agonist, 8- OH-DPAT (8-hydroxy-2-(di-n-propylamino) tetralin), the mechanism of the anti-depression effect of N. s. on rats was investigated, and the effects compared with two well-known antidepressants, Hyperium Perforatum (St. Johns Wort) and fluoxetine (Prozac). Animals were divided into five groups: the normal (N) group without chronic mild stress (CMS), the control (C) group under CMS for 8 weeks, the Nelumbinis Semen (N. s.) treatment group under CMS for 8 weeks, the Hyperium Perforatum (H. p.) treatment group under CMS for 8 weeks and finally, the fluoxetine (F) treatment group under CMS for 8 weeks. Each treatment was administered to rats during the last 4 weeks of the 8-week CMS. A sucrose intake test was performed to test the anti-depression effect of N. s. The N. s. treatment significantly reversed the decreased sucrose intake under CMS (P<0.05 compared to control group under CMS). In the CA2 and CA3 regions of the hippocampus, both N. s. and H. p. reversed the CMS-induced decrease in $5-HT_{1A}$receptor binding. In the I to II regions of the frontal cortex, N. s. and H. p. also reversed the CMS-induced decrease in$5-HT_{1A}$receptor binding, and even showed a significant increase in $5-HT_{1A}$receptor binding compared to the F treatment group (N. s. vs. P, p<0.05, H. p. vs. P, p<0.05). However, in the hypothalamus, all treatments reversed the CMSinduced decrease in $5-HT_{1A}$receptor binding. This reversal effect of N. s. on the decrease in $5-HT_{1A}$receptor binding in the frontal cortex, hippocampus and hypothalamus of rat brains was very similar to that of H. p, but different from that of F. It is concluded that N. s. presents an anti-depression effect through enhancing $5-HT_{1A}$receptor binding.

Development of Dermal Transduction Epidermal Growth Factor (EGF) Using A Skin Penetrating Functional Peptide (피부투과 기능성 펩타이드를 이용한 경피투과성 상피세포성장인자의 개발)

  • Kang, Jin Sun;La, Ha Na;Bak, Sun Uk;Eom, Hyo Jung;Lee, Byung Kyu;Shin, Hee Je
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 2019
  • The epidermal growth factor (EGF) has a intrinsic function of inducing growth and proliferation of cells through interacting with cell membrane receptors in human epidermis and dermis layer. These functions of EGF are used as a main ingredient for wound healing medicines and anti-aging cosmetics. As a cosmetic ingredient, the EGF has a problem in exhibiting its natural efficacy due to the lack of the ability to penetrate through the stratum corneum, which is known as the skin barrier. In this study, a recombinant human epidermal growth factor ($MTD_{151}-EGF$) fused with the macromolecule transduction domain $(MTD)_{151}$ with the skin penetration ability was developed to improve the skin penetration efficiency of the EGF. Expression of $MTD_{151}-EGF$ was performed in E. coli transformed with a vector encoding the $MTD_{151}-EGF$ gene and then purified. The purified $MTD_{151}-EGF$ was evaluated using cell proliferation assay, cytotoxicity test and skin penetration test by franz diffusion cell assay and artificial skin. Cell proliferation activity of $MTD_{151}-EGF$ purified to high purity of 99% or above was equivalent to the EGF or better, and cytotoxicity was not observed. In addition, the $MTD_{151}-EGF$ showed an excellent penetration efficiency compared to the EGF in the skin penetration test with EGF and $MTD_{151}-EGF$ labeled by FITC in an artificial skin penetration model. Based on the quantitative analysis of the penetrating substance using franz diffusion cell assay, the amount of penetration was about 16 times more than that of EGF. These results can be regarded as an effective alternative to improve the existing physical transdermal penetration method related to the use of various active ingredients for cosmetics.

Autometallography for Zinc Detection in the Central Nervous System (중추신경계통내 분포하는 Zinc의 조직화학적 동정)

  • Jo, Seung-Mook;Gorm, Danscher;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 2000
  • Zinc is one of the most abundant oligoelements in the living cell. It appears tightly bound to some metalloproteins and nucleic acids, loosely bound to some metallothioneins or even as free ion. Small amounts of zinc ions (in the nanomolar range) regulate a plentitude of enzymatic proteins, receptors and transcription factors, thus rolls need accurate homeostasis of zinc ions. Zinc is an essential catalytic or structural element of many proteins, and a signaling messenger that is released by neural activity at many central excitatory synapses. Growing evidences suggest that zinc may also be a key mediator and modulator of the neuronal death associated with transient global ischemia and sustained seizures, as well as perhaps other neurological disease stoles. Some neurons have developed mechanisms to accumulate zinc in specific membrane compartment ('vesicular zinc') which can be evidenced using histochemical techniques. Substances giving a bright colour or emitting fluorescence when in contact with divalent metal ions are currently used to detect them inside cells; their use leads to the so called 'direct' methods. The fixation and precipitation of metal ions as insoluble salt precipitates, their maintenance along the histological process and, finally, their demonstration after autometallographic development are essential steps for other methods, the so called 'indirect methods'. This study is a short report on the autometallograhical approaches for zinc detection in the central nervous system (CNS) by means of a modified selenium method.

  • PDF