• Title/Summary/Keyword: and plasma display panel

Search Result 632, Processing Time 0.029 seconds

Color Inspection System for Plasma Display Panel by Using Area Camera (영역 카메라를 이용한 플라즈마 디스플레이의 컬러출력 검사 시스템)

  • 김우섭;도현철;진성일
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1763-1766
    • /
    • 2003
  • This paper proposes a non-contact color inspection system for plasma display panel (PDP). The red, green, and blue test pattern images are acquired by using the area color CCD camera at the various distance from the PDP. The RGB values are obtained from the region of interest (ROI) which are extracted by applying the image processing to the test pattern image. Finally, the CIE xy and u'v' chromaticity coordinates of the test pattern images according to the distance are acquired from the RGB color coordinates.

  • PDF

Gas dischage Simulation for Color Plasma Display Panel and Measurement of VUV (Vacuum UltraViolet) (칼라 플라즈마 디스플레이 패널용 혼합 가스 최적화 시뮬레이션 및 진공 자외선 측정)

  • Park, Hun-Gun;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1666-1668
    • /
    • 1997
  • This paper reports the optimal gas mixing ratio for color plasma display panel to improve luminous efficiency using gas dischage simulation which contains energy equation. We verified a simulation by measuring vacuum ultraviolet. The luminous efficiency has improved considerably(about 30%) by adding Ar (0.5%), compared with Ne-Xe(4%) mixing gas.

  • PDF

Physical Mechanism of Light emission from Discharge Cells in the Plasma Display Panel (PDP 방전 셀에서 빛이 방출되는 물리적 메커니즘)

  • Uhm, Han-S.;Choi, Eun-H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.556-562
    • /
    • 2006
  • The plasma display panel is made of many small discharge cells, which consist of a discharge space between the cathode and anode. An electrical discharge occurs in the discharge space filled by neon and xenon gases. The electron temperature is determined from the sparking criterion, which theoretically estimates the electrical breakdown voltage in terms of the xenon mole fraction. The plasma in the cell emits vacuum ultraviolet lights of 147 nm and 173 nm, exciting fluorescent material and converting VUV lights to visible lights. The physical mechanisms of all these processes have been theoretically modeled and experimentally measured. The theory and experimental data agree reasonably well. However, new materials and better configuration of cells are needed to enhance discharge and light emission efficiency and to improve the PDP performance.

Microdischarge using priming particles for reducing neon emission in AC plasma display panel with Ne-Xe-He gas mixture

  • Kim, Hyun;Jang, Sang-Hun;Tae, Heung-Sik;Chien, Sung-Il;Lee, Dong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.284-290
    • /
    • 2006
  • This study uses neon, xenon, and helium gas mixture microdischarge to determine the effects of priming particles on the neon emission characteristics in an alternate current plasma display panel (AC PDP). The infrared (823 nm) and neon emission (585 nm) intensities are measured and compared in the blue cells in the case of new discharge with priming particles or conventional discharge without priming particles, respectively. It is found that the priming particles can produce a plasma discharge effectively even under the weak electric field condition, thereby resulting in reducing the neon emission intensity remarkably without sacrificing the IR emission intensity. As a result, it is found that the Ne emission intensity is reduced by about 46.4 % but the blue visible emission intensity is increased by about 15.2 % when compared with the conventional discharge without priming particles.

High-Speed Characteristics of Plasma Display Panel using Priming Overlapping with Display Drive Method (표시기간 중첩 프라이밍 구동기술에 의한 플라즈마 디스플레이 패널의 고속구동특성)

  • Ryeom, Jeong-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2004-2009
    • /
    • 2007
  • A new high-speed drive method for the plasma display panel is proposed. In this method, the address period is inserted for the rest period of the sustain pulses and the priming pulse is applied on the entire panel at the same time overlapping with the sustain period. The ramp shaped priming pulse can be made with a simple drive circuit in this technology and the stable sustain discharge can be induced even by a narrow scan pulse in help of the space charge generated from the address discharge. From the experiments, it is ascertained that the priming pulse hardly influences the sustain discharge. Moreover, the voltage margin of the sustain discharge is almost constant though that of the address discharge broadens with narrowing the scan pulse width. And, if the time interval between the scan pulse and the sustain pulse is within $6{\mu}s$, the voltage margin of the address and the sustain discharges are unaffected though the applied position of the scan pulse is changed. High-speed driving with the address pulse of $0.7{\mu}s$ width was achieved and the address voltage margin of 20V and the sustain voltage margin of 10V were obtained.

Low-Cost High-Efficiency PDP Sustaining Driver with a Resonance Bias Level Shift

  • Park, Kyung-Hwa;Yi, Kang-Hyun
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.779-786
    • /
    • 2013
  • A highly efficient sustaining driver is proposed for plasma display panels (PDPs). When the PDP is charged and discharged, the proposed sustaining driver employs an address voltage source used in an addressing period. A voltage source is used for fully charging the panel to the sustaining voltage, and an initial inductor current helps the panel discharge to 0 V. The resonance between the panel and an inductor is made by shifting the voltage and current bias level when charging and discharging the panel. As a result, the proposed circuit can reduce power consumption, switching loss, heat dissipation, and production cost. Experimental results of a 42-inch PDP are provided to verify the operation and features of the proposed circuit.

Discharge Characteristic Analysis with a Ramp Reset Waveform Using 2-Dimensional Simulation in the PDP (AC PDP에서 2차원 수치해석을 이용한 Ramp Reset 구동파형에 따른 방전 특성 분석)

  • Park, Suk-Jae;Choi, Hoon Young;Seo, Jeong-Hyun;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.192-194
    • /
    • 2003
  • In this paper, we present a 2-Dimensional simulation model of the discharge in an ac plasma display panel cell. Therefore, we study a ramp reset waveform in an ac plasma display panel discharge cell using 2-Dimensional simulation. Finally We research a connection between priming particles' density and stability.

  • PDF

The Study of erosion characteristics for MgO layer in plasma display panel (플라즈마 디스플레이 패널의 MgO막 부식 특성에 관한 연구)

  • Shin, Jae-Hwa;Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.72-74
    • /
    • 2002
  • In this paper, we showed the erosion characteristics of MgO protector layer releated to lifetime of plasma display panel(PDP). We observed MgO erosion characteristic as a functions of deposition conditions. In RIE condition of Xe gas, the lowest erosion rate appears in the conditions of no heating, bias voltage -30V and pressure 5mtorr. In general. as deposition rate increases, erosion rate decreases.

  • PDF

Comparative study on one and two-path single energy recovery circuit for plasma display panel (PDP)

  • Yi, Kang-Hyun;Choi, Seong-Wook;Moon, Gun-Woo;Park, Jung-Pil;Jung, Nam-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.256-259
    • /
    • 2006
  • Comparison of one two-path single energy recovery circuit for plasma display panel (PDP) is shown in this paper. A single energy recovery circuit (SERC) is proposed to reduce cost for manufacturing PDP and there are two ways, one and two-path, in driving this circuit. Compared with one-path SERC, there are low power consumption, low surge current and high performance in two-path SERC. The results will be shown with 42-inch HD panel.

  • PDF

The characteristics of anti-erosion for MgO protecting layer in plasma display panel (플라즈마 디스플레이 보호막으로 사용되는 마그네슘 산화막(MgO)의 내식각 특성)

  • 최훈영;이석현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.163-169
    • /
    • 2000
  • In this paper, we showed the erosion characteristic of MgO protector layer releated to lifetime of plasma display panel(PDP). We observed MgO erosion characteristic as a functions of deposition conditions, pressure and distance between electrodes. In RIE condition of Xe gas, the lowest erosion rate appears in the conditions of no heating bias voltage -30V and pressure 5mtorr. In general, as deposition rate increases, erosion rate decreases. In real panel, when the gap distance between electrodes is narrow and the pressure is low, the heavy plasma damage appears. Also, the surfaces between electrodes and on the bus electrode are extremely damaged.

  • PDF