• Title/Summary/Keyword: and plasma display panel

Search Result 632, Processing Time 0.026 seconds

Discharge Properties of an AC-Plasma Display Panel

  • Sungkyoo Lim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • Two kinds of the ac-plasma display panel (PDP) with the comb type and the matrix type electrodes were fabricated. The discharge properties were studied as a function of as species (Ne and Ne+He+Xe) and its pressure. The firing voltages (Vf) of the PDP with comb type electrodes were 159 V and 195 V under pure Ne and ne+He+Xe(68:30:2) gas mixture respectively. In case of PDP cell with the matrix type electrodes the Vf was increased to 200 V for pure Ne and 240 V for Ne+He+Xe gas mixture under the same gas pressure(300 mbar).

THERMALLY INDUCED STRESSES IN PLASMA DISPLAY PANEL (PDP) MODULE (PDP내에서의 열응력)

  • Kim, Deok-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.444-445
    • /
    • 2010
  • Predictive modeling schemes have been developed to characterize the heat Transfer and thermo-mechanical behavior for the plasma display panel (PDP) in operation. The inverse approach was adopted to predict the accurate temperature distribution and deformation in PDP. The predictive models were validated with the measurements from real panel. The developed models could be utilized to predict and/or improve the product quality of PDP.

  • PDF

3-dimensional measurement for the light emitted from plasma display panel

  • Choi, Hoon-Young;Lee, Seung-Gol;Lee, Seok-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.99-100
    • /
    • 2000
  • We measured 3-dimensional images of the light emitted from plasma display panel by using newly proposed scanned point detecting method (SPDM). From the 3-dimensional emission images, we know that as the sustain voltage increases, intensity of light detected without phosphor increases and the position of the maximum intensity moves to the outside from the electrode gap. Also, we know that 2-dimensional simulations under the assumption that neglects the Y axis variation do not agree with 3-dimensional experiment results.

  • PDF

Comparision Study Between Modeling and Experiment of the Breakdown Voltage for AC Plasma Display Panel (AC 플라즈마 디스플레이패널의 방전개시전압에 모델과 실험의 비교에 관한 연구)

  • 박장식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1039-1044
    • /
    • 2000
  • Breakdown voltage model and expertiments are compared for discharge cells of AC plasma display panel. In the model, discharge paths are assumed to be initial electric field lines and the one-dimensional continuity equation is applied to the charged particle transport at each field line. The comparisons are performed in the wide range of gas pressure (50-600torr), Xe partial pressure over total pressure (1-6%), sustain electrode gap(100-1000$\mu\textrm{m}$), wall height(130, 300$\mu\textrm{m}$), and voltage pulse width(2-6${\mu}$s). The presented breakdown voltage model well agree with experiments in the above wide range. The increase of breakdown voltage with the decrease of the width(L) of protruding electrode is also described by the model.

  • PDF

Evaluation of Mechanical Properties of Barrier Ribs for Plasma Display Panel Using Nano Indenter Technology (나노 인덴터를 이용한 플라즈마 디스플레이 소자(PDP)내 격벽의 기계적 물성 평가)

  • Jung, Byung-Hae;Kim, Hyung-Sun
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • For the rib materials in PDP(plasma display panel), an effective method to improve the mechanical properties is to form a composite material by reinforcing a glass matrix with rigid fillers, such as alumina and titania powders. In this study, two types of ribs with different volume percent of fillers and with different glass matrix were tested for hardness, Young's modulus with the Berkovich indentation. As a result, cracks appeared around at the load of 1345 mN for the dense type of rib, while porous one endured until 2427 mN without any crack formation. Young's modulus and hardness decreased at the range: 90∼65 GPa, 9∼4 GPa, respectively as a function of indent load. Thus, a new method with nanoindenter represents a possible evaluation method for mechanical properties of barrier ribs.

Laser-Direct Patterning for Plasma Display Panel (플라즈마 디스플레이 패널을 위한 레이저 직접 패터닝)

  • Ahn, Min-Young;Lee, Kyoung-Cheol;Lee, Hong-Kyu;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.99-102
    • /
    • 1999
  • A mixture which was made from organic gel, glass powder and ceramic powder was masklessly etched for fabrication of barrier rib of PDP(Plasma Display Panel) by focused Ar$^{+}$ laser( λ =514 nm) and Nd:YAG(λ =532, 266 nm) laser irradiation at the atmosphere. The depth of the etched grooves increases with increasing a laser fluence and decreasing a scan speed. Using second harmonic of Nd:YAG laser, the threshold laser fluence was 6.5 mJ/$\textrm{cm}^2$ for the sample of PDP barrier rib softened at 12$0^{\circ}C$. The thickness of 130 ${\mu}{\textrm}{m}$ of the sample on the glass was clearly removed without any damage on the glass substrate by fluence of 19.5 J/$\textrm{cm}^2$....

  • PDF

The Measurement and Analysis of Three-Dimensional Light Emitted from Plasma Disp1ay Panel by Optica1 Method (광학적인 방법에 의한 플라즈마 디스플레이 패널의 3차원 광 방출 측정과 분석)

  • Choe, Hun-Yeong;Lee, Seok-Hyeon;Lee, Seung-Geol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.1
    • /
    • pp.31-38
    • /
    • 2002
  • We measured a 3-dimensional images of the light emitted from plasma display panel(PDP) by using newly proposed scanned point detecting system. In the panel without phosphor, as we scan from the rear glass to the front glass, the detected light intensity increases and the light intensity detected in the inside edge of the ITO electrodes shows the stronger intensity than others. The light intensity detected between the barrier ribs shows the largest value of brightness. Also, as the sustain voltage increases, the detected light intensity increases. In the panel with phosphor, the intensity of light detected at barrier rib shows the stronger light intensity than rear plate. Therefore, the phosphor of barrier rib is very important. From these results the 3-dimensional measurement is necessary to understand exactly the discharge phenomenon in the PDP cell.

Improvement of Luminous Efficacy of Plasma Display Panel with Double Pulse Memory (Double Pulse Memory 방식을 이용한 Plasma Display Panel의 효율 향상에 관한 연구)

  • Choi, Kyung-Cheol;Shin, Bum-Jae;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.423-426
    • /
    • 1991
  • A Plasma Display Panel with Double Pulse Memory was fabricated and its luminance and luminous efficacy were investigated. Application of non-discharge pulses to an auxiliary anode increased luminance by 43% and luminous efficacy by 33%. Compared to PDP with PPM(Planar Pulse Memory) driving technique, PDP with DPM obtained higher luminous efficacy and consumed lower power with the same delay time.

  • PDF

A Study on the Relationships Between the Electrooptical Characteristics and Working Gas Xe+Ne+He (AC PDP의 전기광학적 특성과 동작 Gas $Xe_x+Ne_y+He_{1-y)$의 상관관계에 관한 연구)

  • Park, Chung-Hoo;Yoo, Su-Bok;Lee, Hae-June;Lee, Ho-Jun;Kim, Jae-Sung;Lee, Don-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1619-1625
    • /
    • 2007
  • The gas mixture ratio of PDP discharges plays a very important role in the discharge characteristics of a plasma display panel. The increase of Xe contents results in the increases of luminance and luminous efficiency while it also results in the increase of the breakdown voltage. The addition of He gas increases the brightness and the luminous efficiency. Especially, the luminance and the luminous efficiency have a maximum value when the partial pressure of He is about 10% of the total pressure for a standard plasma display panel with Xe fraction of $10\sim30%$.

UV emission characteristics of Ne+$N_2$ gas-mixture discharges in AC Plasma Display Panel

  • Baek, Byung-Jong;Hong, Sang-Min;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.586-589
    • /
    • 2002
  • The Ultra Violet(UV) emission characteristics of Neon + Nitrogen gas-mixture discharge was investigated in AC plasma display panel. The firing voltage of Ne+$N_2$ gas-mixture discharge increased with increasing nitrogen concentration. The UV intensity emitted from the gas discharge also increased with increasing nitrogen concentration. The UV efficiency increase with increasing $N_2$ partial pressure at low $N_2$ concentration, and then UV efficiency is saturated at high $N_2$ concentration.

  • PDF