• 제목/요약/키워드: and passivity

검색결과 178건 처리시간 0.03초

A stabilizing control technique for bilateral teleoperation system with time delay

  • Kim, H.W.;Suh, I.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.336-341
    • /
    • 2004
  • In this paper, a hybrid stabilization approach involving both passivity observer/passivity controller and wave variables is addressed to stabilize a teleoperation system with fixed time delay. To guarantee the stability of master or slave side, passivity observer/passivity controller are applied. But, passivity observer/passivity controller cannot deal with communication delay, and thus even small communication delay cause the system to be unstable. To cope with this problem, wave variables are additionally employed to have robustness to fixed communication delays. To show the validity of our proposed approach, several computer simulation results are illustrated.

  • PDF

Time Domain Passivity Approach for Soft and Deformable Environments

  • Ryu, J.H.;Kim, J.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.107-112
    • /
    • 2005
  • Recently proposed stable teleoperation control scheme, base on time domain passivity, is modified to remove several conservatisms. During unconstrained motion and contacting with soft and deformable environments, the two-port time domain passivity approach [21] was excessively dissipating energy even though it was stable without any energy dissipation. The main reason of this conservatism is on the fact that the time domain passivity controller does not include the external energy dissipation elements at the slave manipulator. The measured interaction force between slave and environment allow the time domain passivity observer to include the amount of energy dissipation of the slave manipulator to the monitored energy. With the modified passivity observer, reference energy following idea [24] is applied to satisfy the passivity condition. The feasibility of the developed methods is proved with experiments. Improved performance is obtained in unconstrained motion and contacting with a soft environment.

  • PDF

As, Sb, Bi, Pb가 조동의 부동태에 미치는 영향 (Effect of Arsenic, Antimony, Bismuth and Lead on Passivation Behavior of Copper Anode)

  • 안승천;이상문;김용환;정원섭;정우창
    • 한국표면공학회지
    • /
    • 제39권5호
    • /
    • pp.215-222
    • /
    • 2006
  • The passivity behavior of copper anode containing impurities in copper sulfate solution for electrorefining process was studied at several different levels of impurities such as As, Sb, Bi and Pb. The passivity behavior was investigated by electrochemical techniques (galvanostatic, potentiodynamic and cyclic voltammetry tests) and surface analysis (optical microscopy, electron probe microanalysis, scanning electron microscopy). The results were that arsenic, antimony inhibited passivation and bismuth accelerated it and lead containing anode showed different passivity behavior from above anodes. The improved passivity characteristics could be explained by decrease in oxygen content in passivity film which resulted from a reaction among the impurities, oxygen and copper in the anode. The SEM image revealed that arsenic or antimony containing anode exhibited a porous passivity film and bismuth containing anode showed the compact passivity film and lead containing anode had loose passivity film on anode.

변형 가능한 작업환경에 대한 시간영역 수동제어 방법 (Time Domain Passivity Approach for Soft and Deformable Environments)

  • 유지환
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.457-463
    • /
    • 2006
  • Recently proposed control scheme for a stable teleoperation, which was based on two-port time-domain passivity approach[21], has been successful for a contact with high stiffness environments. However, we found several conservatisms during the contact with deformable environments and unconstrained motion. The two-port time-domain passivity controller was excessively dissipating energy even though it was not necessary for some cases of an unconstrained motion and soft contact. The main reason of those conservatisms was on the fact that the two-port time-domain passivity controller was activated without considering the amount of energy dissipation at the master and slave manipulators. Especially, the exclusion of the slave manipulator from the two-port was the dominant reason of the conservatisms. In this paper, we consider the amount of energy dissipation at slave manipulator for designing the time-domain passivity observer and controller. The measured interaction force between slave manipulator and environment allow the time-domain passivity observer to include the amount of energy dissipation at the slave manipulator. Based on the modified passivity observer, reference energy following method[24] is applied to satisfy the passivity condition in real-time. The feasibility of the developed methods is proved with experiments. Improved performance is obtained for an interaction with deformable environments and an unconstrained motion.

Passivity 기반 동기 발전기의 여자기 및 조속기 시스템의 제어 기법 (Passivity-based Control Approach of Exciter and Governor Systems for Synchronous Electric Generators)

  • 조현철
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.561-568
    • /
    • 2018
  • Passivity theory is significantly applied to analyze stability of nonlinear dynamic systems and construct its stable control systems. This paper presents a passivity based control design approach for exciters and governors which are employed to regulate the terminal voltage and the rotor velocity of synchronous generator systems in industry fields. We consider the IEEE type 1 exciter and the gas turbine (GT) governor models respectively in this paper. We first carry out a passivity analysis for exciter and governor control systems, which are numerically obtained from its mathematical models. And then its control parameters are selected to assure passivity conditions in a design procedure. Lastly, we investigate numerical simulations to demonstrate reliability of the proposed control approach against large-scale generators with parameter changes.

웨이브 변수의 가변 특성 임피던스를 이용한 시간지연을 갖는 양 방향 원격조작시스템의 안정화 제어 방법 (A Stabilizing Control technique for Bilateral Teleoperation System with Time delay using Adjustable Characteristic Impedance of wave Variable)

  • 김형욱;김종복;서일홍;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제9권8호
    • /
    • pp.600-609
    • /
    • 2003
  • A hybrid stabilization approach involving both Passivity Observer/passivity Controller and wave variables is addressed to stabilize the teleoperation system with time delay. To guarantee the stability of master or slave side, Passivity Observer and Passivity Controller are applied. But Passivity Observer and Passivity Controller technique cannot deal with communication delay and even small communication delay cause the system to be unstable. To cope with this problem, wave variables are additionally employed to have robustness to arbitrary delays. To show the validity of our proposed approach, several computer simulation results are illustrated.

시간영역 수동성 기법을 이용하여 시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기: 리셋 방법 (Bilateral Control with Time Domain Passivity Approach under Time-varying Communication Delay: Resetting Scheme)

  • 유지환
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1124-1129
    • /
    • 2008
  • Recently, two-port time-domain passivity approach was modified for time-varying communication delay. The newly proposed approach could achieve stable teleoperation even under the serious time-varying delay and packet loss communication condition. However, after some operation hour, the accumulated energy difference between the input energy from one port and the output energy at the other port caused unstable behavior until the passivity controller is activated. Resetting scheme is introduced for solving this problem, and stable bilateral teleoperation can be guaranteed without worrying about the accumulated energy difference.

시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기 : 시간영역 수동성 기법 (Bilateral Controller for Time-varying Communication Delay: Time Domain Passivity Approach)

  • 유지환
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1099-1105
    • /
    • 2007
  • In this paper, modified two-port time-domain passivity approach is proposed for stable bilateral control of teleoperators under time-varying communication delay. We separate input and output energy at each port of a bilateral controller, and propose a sufficient condition for satisfying the passivity of the bilateral controller including time-delay. Output energy at the master port should be less than the transmitted input energy from the slave port with time-delay, and output energy at the slave port should be less than the transmitted input energy from the master port with time-delay. For satisfying above two conditions, two passivity controllers are attached at each port of the bilateral controller. A packet reflector with wireless internet connection is used to introduce serious time-varying communication delay of teleoperators. Average amount of time-delay was about 190(msec) for round trip, and varying between 175(msec) and 275(msec). Moreover some data packet was lost during the communication due to UDP data communication. Even under the serious time-varying delay and packet loss communication condition, the proposed approach can achieve stable teleoperation in free motion and hard contact as well.

Passivity Problem of Micro-Teleoperation Handling a Insignificant Inertial Object.

  • Park, Kyongho;W.K. Chung;Y. Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.32.5-32
    • /
    • 2001
  • There has been many teleoperation systems handling the micro object. However, the stability problem for these systems has not been mentioned yet. Historically, Lawrence[1] proposed the Transparency-Optimized Architecture and passivity theorem for stability analysis of bilateral teleoperation. He claimed that unless the task(or environment) impedance contains significance inertial behavior, Passivity condition for Transparency-optimized architecture is not satisfied. In this paper we propose one method which satisfies passivity condition for the micro-teleoperation system handling a insignificant inertial object and is based on the structure of Lawrence and Hashtrudi-Zaad[2] and velocity-force scaling.

  • PDF

A Heuristic Rule for the Performance Improvement in Time Domain Passivity Control of Haptic Interfaces

  • Kim, Yoon-Sang;Blake Hannaford
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.212-216
    • /
    • 2002
  • A practical issue is studied to improve the performance of a new energy based method of achieving stable, high performance haptic interface control. The issue is related to resetting the amount of energy accumulated in the Passivity Observer for faster operation. A heuristic method is derived and experimentally tested for the resetting and it is shown to help the PC to operate sooner when the system gets active. Experimental results are presented for the “Excalibur” haptic device.