• 제목/요약/키워드: and object location

Search Result 1,062, Processing Time 0.037 seconds

Design of Moving Object Pattern-based Distributed Prediction Framework in Real-World Road Networks (실세계 도로 네트워크 환경에서의 이동객체 패턴기반 분산 예측 프레임워크 설계)

  • Chung, Jaehwa
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.527-532
    • /
    • 2014
  • Recently, due to the proliferation of mobile smart devices, the inovation of bigdata, which analyzes and processes massive data collected from various sensors implaned in smart devices, expands to LBSs. Many location prediction techniques for moving objects have been studied in literature. However, as the majority of studies perform location prediction which depends on specific applications, they hardly reflect the technical requirements of next-generation spatio-temporal information services. Therefore, this paper proposes the design of general-purpose distributed moving object prediction query processing framework that is capable of performing primitive and various types of queries effectively based on massive spatio-temporal data of moving objects in real-world space networks.

A Design and Implementation of Security Image Information Search Service System using Location Information Based RSSI of ZigBee (ZigBee의 RSSI 위치정보기반 보안 영상정보 검색 시스템 설계 및 구현)

  • Kim, Myung-Hwan;Chung, Yeong-Jee
    • Journal of Information Technology Services
    • /
    • v.10 no.4
    • /
    • pp.243-258
    • /
    • 2011
  • With increasing interest in ubiquitous computing technology, an infrastructure for the short-distance wireless communication has been extended socially, bringing spotlight to the security system using the image or location. In case of existing security system, there have been issues such as the occurrences of blind spots, difficulty in recognizing multiple objects and storing of the unspecified objects. In order to solve this issue, zone-based location-estimation search system for the image have been suggested as an alternative based on the real-time location determination technology combined with image. This paper intends to suggest the search service for the image zone-based location-estimation. For this, it proposed the location determination algorism using IEEE 802.15.4/ZigBee's RSSI and for real-time image service, the RTP/RTCP protocol was applied. In order to combine the location and image, at the event of the entry of the specified target, the record of the time for image and the time of occurrence of the event on a global time standard, it has devised a time stamp, applying XML based meta data formation method based on the media's feature data based in connection with the location based data for the events of the object. Using the proposed meta data, the service mode which can search for the image from the point in time when the entry of the specified target was proposed.

TOD: Trash Object Detection Dataset

  • Jo, Min-Seok;Han, Seong-Soo;Jeong, Chang-Sung
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.524-534
    • /
    • 2022
  • In this paper, we produce Trash Object Detection (TOD) dataset to solve trash detection problems. A well-organized dataset of sufficient size is essential to train object detection models and apply them to specific tasks. However, existing trash datasets have only a few hundred images, which are not sufficient to train deep neural networks. Most datasets are classification datasets that simply classify categories without location information. In addition, existing datasets differ from the actual guidelines for separating and discharging recyclables because the category definition is primarily the shape of the object. To address these issues, we build and experiment with trash datasets larger than conventional trash datasets and have more than twice the resolution. It was intended for general household goods. And annotated based on guidelines for separating and discharging recyclables from the Ministry of Environment. Our dataset has 10 categories, and around 33K objects were annotated for around 5K images with 1280×720 resolution. The dataset, as well as the pre-trained models, have been released at https://github.com/jms0923/tod.

CAD-Based 3-D Object Recognition Using Hough Transform (Hough 변환을 이용한 캐드 기반 삼차원 물체 인식)

  • Ja Seong Ku;Sang Uk Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1171-1180
    • /
    • 1995
  • In this paper, we present a 3-D object recognition system in which the 3-D Hough transform domain is employed to represent the 3-D objects. In object modeling step, the features for recognition are extracted from the CAD models of objects to be recognized. Since the approach is based on the CAD models, the accuracy and flexibility are greatly improved. In matching stage, the sensed image is compared with the stored model, which is assumed to yield a distortion (location and orientation) in the 3-D Hough transform domain. The high dimensional (6-D) parameter space, which defines the distortion, is decomposed into the low dimensional space for an efficient recognition. At first we decompose the distortion parameter into the rotation parameter and the translation parameter, and the rotation parameter is further decomposed into the viewing direction and the rotational angle. Since we use the 3-D Hough transform domain of the input images directly, the sensitivity to the noise and the high computational complexity could be significantly alleviated. The results show that the proposed 3-D object recognition system provides a satisfactory performance on the real range images.

  • PDF

Study of Marker Detection Performance on Deep Learning via Distortion and Rotation Augmentation of Training Data on Underwater Sonar Image (수중 소나 영상 학습 데이터의 왜곡 및 회전 Augmentation을 통한 딥러닝 기반의 마커 검출 성능에 관한 연구)

  • Lee, Eon-Ho;Lee, Yeongjun;Choi, Jinwoo;Lee, Sejin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • In the ground environment, mobile robot research uses sensors such as GPS and optical cameras to localize surrounding landmarks and to estimate the position of the robot. However, an underwater environment restricts the use of sensors such as optical cameras and GPS. Also, unlike the ground environment, it is difficult to make a continuous observation of landmarks for location estimation. So, in underwater research, artificial markers are installed to generate a strong and lasting landmark. When artificial markers are acquired with an underwater sonar sensor, different types of noise are caused in the underwater sonar image. This noise is one of the factors that reduces object detection performance. This paper aims to improve object detection performance through distortion and rotation augmentation of training data. Object detection is detected using a Faster R-CNN.

Temporal Pattern Mining of Moving Objects for Location based Services (위치 기반 서비스를 위한 이동 객체의 시간 패턴 탐사 기법)

  • Lee, Jun-Uk;Baek, Ok-Hyeon;Ryu, Geun-Ho
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.335-346
    • /
    • 2002
  • LBS(Location Based Services) provide the location-based information to its mobile users. The primary functionality of these services is to provide useful information to its users at a minimum cost of resources. The functionality can be implemented through data mining techniques. However, conventional data mining researches have not been considered spatial and temporal aspects of data simultaneously. Therefore, these techniques are inappropriate to apply on the objects of LBS, which change spatial attributes over time. In this paper, we propose a new data mining technique for identifying the temporal patterns from the series of the locations of moving objects that have both temporal and spatial dimension. We use a spatial operation of contains to generalize the location of moving point and apply time constraints between the locations of a moving object to make a valid moving sequence. Finally, the spatio-temporal technique proposed in this paper is very practical approach in not only providing more useful knowledge to LBS, but also improving the quality of the services.

Managing and Querying Moving Objects in Networks

  • Kim Jae-Chul;Heo Tae-Wook;Lee Jai-Ho;Kim Kwang-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.367-370
    • /
    • 2004
  • We model a moving object as a sizable physical entity equipped with GPS, wireless communication capability, and a computer such as a PDA and mobile phone. Furthermore, we have observed that a real trajectory of a moving object is the result of interactions among moving objects in the system yielding Multi-points instead of a line segment. In this paper, the new types and operations are integrated seamlessly into the moving object framework to achieve a relatively simple, consistent and powerful overall model and query language for constrained and unconstrained movement.

  • PDF

Recommendation Technique using Social Network in Internet of Things Environment (사물인터넷 환경에서 소셜 네트워크를 기반으로 한 정보 추천 기법)

  • Kim, Sungrim;Kwon, Joonhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.47-57
    • /
    • 2015
  • Recently, Internet of Things (IoT) have become popular for research and development in many areas. IoT makes a new intelligent network between things, between things and persons, and between persons themselves. Social network service technology is in its infancy, but, it has many benefits. Adjacent users in a social network tend to trust each other more than random pairs of users in the network. In this paper, we propose recommendation technique using social network in Internet of Things environment. We study previous researches about information recommendation, IoT, and social IoT. We proposed SIoT_P(Social IoT Prediction) using social relationships and item-based collaborative filtering. Also, we proposed SR(Social Relationship) using four social relationships (Ownership Object Relationship, Co-Location Object Relationship, Social Object Relationship, Parental Object Relationship). We describe a recommendation scenario using our proposed method.

Object Recognition using 3D Depth Measurement System. (3차원 거리 측정 장치를 이용한 물체 인식)

  • Gim, Seong-Chan;Ko, Su-Hong;Kim, Hyong-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.941-942
    • /
    • 2006
  • A depth measurement system to recognize 3D shape of objects using single camera, line laser and a rotating mirror has been investigated. The camera and the light source are fixed, facing the rotating mirror. The laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The camera detects the laser light location on object surfaces through the same mirror. The scan over the area to be measured is done by mirror rotation. The Segmentation process of object recognition is performed using the depth data of restored 3D data. The Object recognition domain can be reduced by separating area of interest objects from complex background.

  • PDF

Things Recommendation Method using Social Relationship in Social Internet of Things (소셜 사물인터넷에서 소셜 관계를 이용한 사물 추천 기법)

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.49-59
    • /
    • 2014
  • The Internet of Things(IoT) is a new promising technology made from a variety of technology. The IoT links the objects or people, then enabling anytime, anywhere connectivity for anything and not only for anyone. Social networking services have changed the way people communicate. Recently, new research challenges in many areas of Internet of things and social networking services are fired. In this paper, we propose things recommendation method using social relationship in social Internet of Things. We study previous researches about social network service, IoT, and social IoT. We proposed SIoT_FW(Social IoT Friendship Weight) using static and a dynamic social friendship weight. Also, our method considers four social relationships (Ownership Object Relationship, Co-Location Object Relationship, Social Object Relationship, Parental Object Relationship). We presents a music device scenario using our proposed method.