Kim, Dong-Ho;Lee, Hye-Jin;Lee, Hyun-Ah;Kim, Jin-Suk
The KIPS Transactions:PartD
/
v.11D
no.6
/
pp.1231-1238
/
2004
By virtue of the advanced Internet technology, there are lots of research works for e-Logistics which means virtual business activities or service architecture based on the Internet among the logistics companies. Because e-Logistics environment requires more dynamic and global service area, conventional vehicle monitoring and control technologies innate many problems in terms of Integrating, storing and sharing the location data. It needs the development of the moving object technology in order to resolve efficiently the limitations. In this paper, we propose the whole components of the moving object management system which supports the advanced sharing the location information as well as the integration of location data. We are sure the suggested system can be adopted to construct the next generation-logistics vehicle monitoring and control system by reducing the overall cost and time.
Image-based 3D object detection is one of the important and difficult problems in autonomous driving and robotics, and aims to find and represent the location, dimension and orientation of the object of interest. It generates three dimensional (3D) bounding boxes with only 2D images obtained from cameras, so there is no need for devices that provide accurate depth information such as LiDAR or Radar. Image-based methods can be divided into three main categories: monocular, stereo, and multi-view 3D object detection. In this paper, we investigate the recent state-of-the-art models of the above three categories. In the multi-view 3D object detection, which appeared together with the release of the new benchmark datasets, NuScenes and Waymo, we discuss the differences from the existing monocular and stereo methods. Also, we analyze their performance and discuss the advantages and disadvantages of them. Finally, we conclude the remaining challenges and a future direction in this field.
In sensor network processing environments, current location tracking methods have problems in accuracy on receiving the transmitted data and pinpointing the exact locations depending on the applied methods, and also have limitations on decision making and monitoring the situations because of the lack of considering context-awareness. In order to overcome such limitations, we proposed a method which utilized context-awareness in a data processing module which tracks a location of the magnetic object(Magnetic Line Tracer) and controlled introspection data based on magnetic sensor. Also, in order to prove its effectiveness we have built a wireless sensor network test-bed and conducted various location tracking experiments of line tracer using the data and resulted in processing of context-aware data. Using the new data, we have analyzed the effectiveness of the proposed method for locating the information database entries and for controlling the route of line tracer depending on context-awareness.
This paper implemented the u-Healthcare Context Information System (HCIS) supporting ubiquitous healthcare by using location, health and titrating environment information collected from sensors/devices equipped in home for healthcare home service. The HCIS is based on the Distributed Object Group Framework (DOGF), a management model which can customize distributed resources, and manages various context information, applications and devices as a group in healthcare home environment, as one more logical units. Also, this system provides continuous healthcare multimedia service considering a resident's location using Mobile Proxy, and the healthcare context information through Context Provider to a resident in home. For verifying execution of our system, we implemented the seamless multimedia service based on resident's location and the prescription/advice and schedule notification/alarm service as healthcare applications in home. And we showed the executing results of healthcare home service by using service device existed in the residential space on which the resident is located according to the healthcare scenario.
Journal of the Korea Society of Computer and Information
/
v.26
no.12
/
pp.77-84
/
2021
In this paper, we propose a system that uses image data and beacon data to classify authorized and unauthorized perosn who are allowed to enter a group facility. The image data collected through the IP camera uses YOLOv4 to extract a person object, and collects beacon signal data (UUID, RSSI) through an application to compose a fingerprinting-based radio map. Beacon extracts user location data after CNN-LSTM-based learning in order to improve location accuracy by supplementing signal instability. As a result of this paper, it showed an accuracy of 93.47%. In the future, it can be expected to fusion with the access authentication process such as QR code that has been used due to the COVID-19, track people who haven't through the authentication process.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2002.05a
/
pp.818-823
/
2002
Addition of point supports results in increasing the fundamental frequency of a structure, generally. In this paper, searching more effective location of point supports is a major object to maximize a fundamental frequency of various cantilever plates. Results are presented by aspect ratio of the plate, by design domain within which point supports generate, and by mass location equipped on the plate. Optimization method is applied due to expand the ESO(Evolutionary Structural Optimization) method.
In this paper, we propose a new object tracking algorithm using deformed template and Level-Set theory, which is robust against background variation, object flexibility and occlusion. The proposed tracking algorithm consists of two steps. The first step is an estimation of object shape and location, on the assumption that the transformation of object can be approximately modeled by the affine transform. The second step is a refinement of the object shape to fit into the real object accurately, by using the potential energy map and the modified Level Set speed function. Experimental results show that the proposed algorithm can track non-rigid objects with large variation in the backgrounds.
Object detection is a challenging field in the visual understanding research area, detecting objects in visual scenes, and the location of such objects. It has recently been applied in various fields such as autonomous driving, image surveillance, and face recognition. In traditional methods of object detection, handcrafted features have been designed for overcoming various visual environments; however, they have a trade-off issue between accuracy and computational efficiency. Deep learning is a revolutionary paradigm in the machine-learning field. In addition, because deep-learning-based methods, particularly convolutional neural networks (CNNs), have outperformed conventional methods in terms of object detection, they have been studied in recent years. In this article, we provide a brief descriptive summary of several recent deep-learning methods for object detection and deep learning architectures. We also compare the performance of these methods and present a research guide of the object detection field.
Journal of the Korean Institute of Telematics and Electronics B
/
v.32B
no.11
/
pp.1405-1416
/
1995
An effective algorithm for implementation of unmanned surveillance system which detects moving object from image sequences, predicts the direction of it, and drives the camera in real time is proposed. Outputs of proposed algorithm are coordinates of location of moving object, and they are converted to the values according to camera model. As a pre- processing, extraction of moving object and shape discrimination are performed. Existence of the moving object or scene change is detected by computing the temporal derivatives of consecutive two or more images in a sequence, and this result of derivatives is combined with the edge map from one original gray level image to obtain the position of moving object. Shape discri-mination(Target identification) is performed by analysis of distribution of projection profiles in x and y directions. To reduce the prediction error due to the fact that the motion cha- racteristic of walking man may have an abrupt change of moving direction, an order adaptive lattice structured linear predictor is proposed.
International Journal of Internet, Broadcasting and Communication
/
v.13
no.2
/
pp.156-165
/
2021
In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.