• Title/Summary/Keyword: and materials

Search Result 97,664, Processing Time 0.11 seconds

On magnetostrictive materials and their use in adaptive structures

  • Dapino, Marcelo J.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.303-329
    • /
    • 2004
  • Magnetostrictive materials are routinely employed as actuator and sensor elements in a wide variety of noise and vibration control problems. In infrastructural applications, other technologies such as hydraulic actuation, piezoelectric materials and more recently, magnetorheological fluids, are being favored for actuation and sensing purposes. These technologies have reached a degree of technical maturity and in some cases, cost effectiveness, which justify their broad use in infrastructural applications. Advanced civil structures present new challenges in the areas of condition monitoring and repair, reliability, and high-authority actuation which motivate the need to explore new methods and materials recently developed in the areas of materials science and transducer design. This paper provides an overview of a class of materials that because of the large force, displacement, and energy conversion effciency that it can provide is being considered in a growing number of quasistatic and dynamic applications. Since magnetostriction involves a bidirectional energy exchange between magnetic and elastic states, magnetostrictive materials provide mechanisms both for actuation and sensing. This paper provides an overview of materials, methods and applications with the goal to inspire novel solutions based on magnetostrictive materials for the design and control of advanced infrastructural systems.

Study on the Development of Standard Reference Materials for Safety Control of Construction Materials (건설재료의 안전적 제어를 위한 표준물질 (Standard Reference Materials) 도출)

  • Lee, Dong Kyu;Lee, Keon Woo;Choi, Myoung Sung
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.54-61
    • /
    • 2017
  • The purpose of this study is to develop standard reference materials for safety control of construction materials considering the required performance of standard materials including flow performance incorporating particles. The flow characteristics of concrete are very complicated depending on mixing proportions of constituent materials, admixtures, amount of mixing, type of mixer, time of mixing, temperature and so forth. Uncertainties and multidimensional properties of concrete have been evaluated through various studies but there are few researches for the development of standard reference material. In this study, based on the rheological concept, the flow performance of construction materials was evaluated to understand the properties of standard reference materials and was finally obtained representing materials which simulate the standard reference materials.

In-situ Synchrotron X-ray Diffraction Measurement of Epitaxial FeRh thin Films

  • Jang, Sung-Uk;Hyun, Seung-Min;Lee, Hwan-Soo;Kwon, Soon-Ju;Kim, Ji-Hong;Park, Ki-Hoon;Lee, Hak-Joo
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2009.12a
    • /
    • pp.204-205
    • /
    • 2009
  • The magnetic properties and structure of FeRh thin film pitaxially grown onto MgO(001) substrate were studied by MPMS(Magnetic Properties Measure System) and in-situ temperature synchrotron XRD(X-ray Diffraction). The transition temperature of FeRh thin films was around 380K. Both M-T curve and d-spacing changes correspond to each other very closely.

  • PDF

Enhanced Stretchability of Gold and Carbon Nanotube Composite Electrodes (Au와 탄소나노튜브 복합체 전극의 연성 향상)

  • Woo, Jung-Min;Jeon, Joo-Hee;Kang, Ji-Yeon;Lee, Tae-Il;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.133-137
    • /
    • 2011
  • Gold have been used as an electrode materials having a good mechanical flexibility as well as electrical conductivity, however the stretchability of the gold on a flexible substrate is poor because of its small elastic modulus. To overcome this mechanical inferiority, the reinforcing gold is necessary for the stretchable electronics. Among the reinforcing materials having a large elastic modulus, carbon nanotube (CNT) is the best candidate due to its good electrical conductivity and nanoscale diameter. Therefore, similarly to ferroconcrete technology, here we demonstrated gold electrodes mechanically reinforced by inserting fabrics of CNTs into their bodies. Flexibility and stretchability of the electrodes were determined for various densities of CNT fabrics. The roles of CNTs in resisting electrical disconnection of gold electrodes from the mechanical stress were confirmed using field emission scanning electron microscope and optical microscope. The best mechanical stability was achieved at a density of CNT fabrics manufactured by 1.5 ml spraying. The concept of the mechanical reinforced metal electrode by CNT is the first trial for the high stretchable conductive materials, and can be applied as electrodes materials in various flexible and stretchable electronic devices such as transistor, diode, sensor and solar cell and so on.

Research on Powder Metallurgy Technology in Fusion Materials in China

  • Ge, Chang-Chun;Zhou, Zhang-Jian;Du, Juan;Song, Shu-Xiang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.896-897
    • /
    • 2006
  • In the viewpoint of engineering, materials problem is a key problem, which determines whether the exploitation of fusion energy will be success. The most important class of fusion materials is plasma-facing materials (PFM). W, as high Z high melting-point metal is one of the most important candidate materials due to its high plasma erosion resistance. Improving the ductility of W and W based alloy, lowering its ductile-brittleness transition temperature for meeting the requirements of fusion application is an important task. In this paper, severalpowder meatllurgy methods of fabricating W and W based materials are being investigated.

  • PDF