• Title/Summary/Keyword: and linear lifts

Search Result 9, Processing Time 0.025 seconds

COMPLETE LIFTS OF PROJECTABLE LINEAR CONNECTION TO SEMI-TANGENT BUNDLE

  • Polat, Murat;Yildirim, Furkan
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.483-501
    • /
    • 2021
  • We study the complete lifts of projectable linear connection for semi-tangent bundle. The aim of this study is to establish relations between these and complete lift already known. In addition, the relations between infinitesimal linear transformations and projectable linear connections are studied. We also have a new example for good square in this work.

SECOND ORDER TANGENT VECTORS IN RIEMANNIAN GEOMETRY

  • Kwon, Soon-Hak
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.959-1008
    • /
    • 1999
  • This paper considers foundational issues related to connections in the tangent bundle of a manifold. The approach makes use of second order tangent vectors, i.e., vectors tangent to the tangent bundle. The resulting second order tangent bundle has certain properties, above and beyond those of a typical tangent bundle. In particular, it has a natural secondary vector bundle structure and a canonical involution that interchanges the two structures. The involution provides a nice way to understand the torsion of a connection. The latter parts of the paper deal with the Levi-Civita connection of a Riemannian manifold. The idea is to get at the connection by first finding its.spary. This is a second order vector field that encodes the second order differential equation for geodesics. The paper also develops some machinery involving lifts of vector fields form a manifold to its tangent bundle and uses a variational approach to produce the Riemannian spray.

  • PDF

Symmetrically loaded beam on a two-parameter tensionless foundation

  • Celep, Z.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.555-574
    • /
    • 2007
  • Static response of an elastic beam on a two-parameter tensionless foundation is investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated edge loads. Governing equations of the problem are obtained and solved by pointing out that a concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis in the case of complete contact and a discontinuity in the foundation reactions in the case of partial contact come into being as a direct result of the two-parameter foundation model. The numerical solution of the complete contact problem is straightforward. However, it is shown that the problem displays a highly non-linear character when the beam lifts off from the foundation. Numerical treatment of the governing equations is accomplished by adopting an iterative process to establish the contact length. Results are presented in figures to demonstrate the linear and non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively.

Full Duplex Robot System for Transferring Flat Panel Display Glass (디스플레이용 판유리 이송을 위한 양방향 이송 로봇장치)

  • Lee, Dong Hun;Lee, Chibum;Kim, Sung Dong;Cho, Young Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.996-1002
    • /
    • 2013
  • This study addresses the development of a full duplex robotic system for transferring flat-panel display glass. We propose to accomplish this using a bidirectional linear transfer mechanism in place of the conventional rotary transfer mechanism. The developed full duplex robot comprises a driving part that carries the glass panel laterally, vertical part that can be moved up and down by means of a ball screw and linear motion guide arrangement, and hand part that slides by the cylinder of the driving part along the guide rail with a V-guide bearing attached to the bottom of the support. In addition, an alignment part prevents the hand part from derailing and holds the hand part while the driving part moves horizontally. The full duplex robot lifts and drives a glass panel directly while transferring it to the buffer and does not require rotational motion. Therefore, both transferring and stacking are realized with a single device. This device can be used in existing industrial facilities as an alternative to existing industrial robots in current as well as future process lines. The proposed full duplex robot is expected to save considerable amounts of time and space, and increase product throughput.

An experimental study on the swirl flow characteristics of a helical intake port (나선형 흡기포트의 선회유동 특성에 관한 실험적 연구)

  • Lee, Ji-Geun;Yu, Gyeong-Won;No, Byeong-Jun;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.793-803
    • /
    • 1997
  • This experimental study was mainly investigated on the swirl flow characteristics in the cylinder generated by a helical intake port. LDA system was used for the measurement of in-cylinder velocity fields. Tangential and axial velocity profiles, with varying valve lifts, valve eccentricity ratios and axial distance, were measured. When the intake valve was set in the cylinder center, we could find that in-cylinder swirl flow fields were composed of a forced vortex motion and a free vortex motion in the vicinity of the cylinder center and the cylinder wall respectively. In case of valve eccentricity ratio, N$_{y}$ = 0.45, the vortex flow which rotates to the opposite direction of a main rotating flow in the cylinder was found. And the reverse flow toward the cylinder head surface was also found in axial velocity profile and it showed the tendency of the linear decrease in the region of 0.leq.Y/B.leq.1.2.2.

A Study on Lifting Problem of Hydrofoil Using Robin Boundary Condition (혼합경계조건에 의한 수중익 해석에 관한 연구)

  • I.S. Moon;C.S. Lee;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.41-50
    • /
    • 1993
  • This paper compares various potential based panel methods for the analysis of two-dimensional hydrofoil. The strength of singularity on each panel is assumed to be constant or linear. Robin boundary condition as well as Neumann and Dirichlet boundary conditions are applied to various formulations to evaluate the accuracies of the methods. Pressures and lifts are computed for various two-dimensional hydrofoil geometries and are compared with the analytic solutions. Extensive studies are performed on the local errors near the trailing edge, known to be sensitive to the foil geometry with sharp trailing edge and high camber. Robin boundary condition with the perturbation velocity potential formulation shows the best accuracy and convergence rate.

  • PDF

Prediction of Peak Back Compressive Forces as a Function of Lifting Speed and Compressive Forces at Lift Origin and Destination - A Pilot Study

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • Objectives: To determine the feasibility of predicting static and dynamic peak back-compressive forces based on (1) static back compressive force values at the lift origin and destination and (2) lifting speed. Methods: Ten male subjects performed symmetric mid-sagittal floor-to-shoulder, floor-to-waist, and waist-to-shoulder lifts at three different speeds (slow, medium, and fast), and with two different loads (light and heavy). Two-dimensional kinematics and kinetics were captured. Linear regression analyses were used to develop prediction equations, the amount of predictability, and significance for static and dynamic peak back-compressive forces based on a static origin and destination average (SODA) backcompressive force. Results: Static and dynamic peak back-compressive forces were highly predicted by the SODA, with R2 values ranging from 0.830 to 0.947. Slopes were significantly different between slow and fast lifting speeds (p < 0.05) for the dynamic peak prediction equations. The slope of the regression line for static prediction was significantly greater than one with a significant positive intercept value. Conclusion: SODA under-predict both static and dynamic peak back-compressive force values. Peak values are highly predictable and could be readily determined using back-compressive force assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

Stability Analysis and Design of a Nonlinear Neuromuscular Control System of a Myoelectric Prosthetic Hand

  • Pak, Pyong-Sik;Okuno, Ryuhei;Akazawa, Kenzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1489-1494
    • /
    • 2003
  • A neuromuscular control system of a myoelectric prosthetic hand (PH) constitutes a nonlinear system with a dead zone whose magnitude is equal to its joint angle when the PH just grasps an object. This is because the neuromuscular control system remains an open-loop system until the PH grasps the object but it constitutes a feedback control system after the PH griped the object in which a torque induced in the fingers of the PH is fed back. To improve the transient performance of the control system, it is desirable to make the feed-forward gain as large as possible, so long as the stability of the system is not impaired. It is also desired that the control system remains stable even when the PH lifts a heavy or rigid object, because this makes the closed loop gain large and leads to the closed system unstable. According to the theory of stability analysis of nonlinear systems, we can only know the sufficient conditions that the system should be stable. Thus the nonlinear theory on stability is insufficient to be used to design the neuromuscular control system for improving its transient responses. This paper shows that the nonlinear system with a dead zone can be approximated to a linear feedback system and that well-known methods of analysis and design on linear control systems can be applicable. It is also shown through various simulation results that errors induced by approximation are practically negligible and thus the design methods are quite accurate.

  • PDF

Effect of Friction on the Hysteresis of the Thrust Forces Acting on Auto Leveling Devices in Vehicle Head Lamps (헤드 램프 빛의 각도 자동 조절 장치에 작용하는 추력의 히스테리시스에 대한 마찰의 영향)

  • Baek, Hong;Kim, Jae-Hoon;Nam, Jin-Sik;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.369-375
    • /
    • 2019
  • This paper presents a new method on how to calculate the thrust forces acting on an auto-leveling device in headlamps for passenger vehicles. The leveling device is used to lower the angle of lights when a load in the trunk of the vehicle lifts it. In the process of the headlamp design, it is imperative to predict the external forces so that the designers can decide whether to proceed or not. The device is composed of three pivot joints with no reaction moment, a plate that holds the lamp, and a leveling motor that changes rotation to linear motion. In this study, force balance, moment balance, and geometric compatibility are applied to the leveling device system so that a nonlinear system of equations can be derived; the multi-dimensional Newton-Raphson algorithm is then used to solve these. A sensitivity analysis is carried out to verify which design variables affect the system the most: the mass of the lamp and the height between the pivot and leveling device affect the thrust forces the most. Then, considering the friction forces between the moving parts, the hysteresis of the forces are derived. An experimental apparatus, designed and developed in this study, is used to verify the exactness of the derived equations. The results from experiments coincide well with the calculated results. The friction hysteresis, in particular, proves this upon analysis.