• Title/Summary/Keyword: and discrete feedback

Search Result 244, Processing Time 0.037 seconds

$H_\infty$ Controller Design for Discrete-time Linear Systems with Time-varying Delays in States using S-procedure (S-procedure를 이용한 상태에 시변 시간지연을 가지는 이산 선형 시스템에 대한 $H_\infty$ 제어기 설계)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • This paper deals with the H$_{\infty}$ control problems for discrete-time linear systems with time-varying delays in states. The existence condition and the design method of the H$_{\infty}$ state feedback controller are given. In this paper, the H$_{\infty}$ control law is assumed to be a memoryless state feedback, and the upper-bound of time-varying delay and S-procedure are used. Through some changes of variables and Schur complement, the obtained sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Robust Reliable H$\infty$ a Control of Continuous/Discrete Uncertain Time Delay Systems using LMI

  • Kim, Jong-Hae;Park, Hong-Bae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.121-127
    • /
    • 1999
  • In this paper, we present robust reliable H$\infty$ controller design methods of continuous and discrete uncertain time delay systems using LMI (linear matrix inequality) technique, respectively. Also the existence conditions of state feedback control are proposed . Using some changes of variables and Schur complements, the obtained sufficient conditions are transformed into an LMI form. The closed loop system by the obtained controller is quadratically stable with H$\infty$ norm bound for all admissible uncertainties, time delay, and all actuator failures occurred within the prespecified set. We show the validity of the proposed method through numerical example.

  • PDF

Robust Stabilization and Guaranteed Cost Control for Discrete-time Singular Systems with Parameter Uncertainties (변수 불확실성을 가지는 이산시간 특이시스템의 강인 안정화 및 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, we consider the design problem of robust stabilization and robust guaranteed cost state feedback controller for discrete-time singular systems with parameter uncertainties by LMI(linear matrix inequality) approach without semi-definite condition and decomposition of system matrices. The objective of robust stabilization controller is to construct a state feedback controller such that the closed-loop system is regular, causal, and stable. In the case of robust guaranteed cost control, the optimal value of guaranteed cost and controller design method are presented on the basis of robust stabilization control technique. Finally, a numerical example is provided to show the validity of the design methods.

Linearization of the Multi-input Discrete-time Nonlinear Systems (다 입력 이산 비선형 시스템의 선형화)

  • Kim, Jae-Hyun;Roh, Dong-Hwi;Park, Soon-Hyoung;Kim, Yong-Min;Lee, Hong-Gi
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.30-39
    • /
    • 2000
  • In order to linearize the nonlinear systems, two different methods(i.e. state coordinate change and feedback) are usually used. In this paper, we consider the multi-input discrete-time nonlinear systems and obtain the necessary and sufficient conditions for both the linearization problem by state-coordinate change and the feedback linearization problem. The way of finding state coordinate change and state feedback which linearize the given system is also given in the proof.

  • PDF

Space-Polarization Division Multiple Access System with Limited Feedback

  • Joung, Heejin;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1292-1306
    • /
    • 2014
  • This paper proposes a space-polarization division multiple access (SPDMA) system that has limited feedback channels. The system simultaneously serves data streams to multiple mobile users through dual-polarized antenna arrays, by using pre-determined sets of precoding vectors that are orthogonal in both space and polarization domains. To this end, a codebook whose elements are sets of the precoding vectors is systematically designed based on the discrete Fourier transform (DFT) matrix and considering the power imbalance of polarized channels. Throughput of the SPDMA system is evaluated and compared to that of space division multiple access (SDMA) system, according to the various parameters including cross polarization discrimination (XPD). The results show that the throughput of SPDMA system outperforms that of SDMA in the environments of high XPD with many mobile users.

Observer-Based Robust Control Giving Consideration to Transient Behavior for Linear Uncertain Discrete-Time Systems

  • Oya, Hidetoshi;Hagino, Kojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.903-908
    • /
    • 2003
  • In this paper, we present an observer-based robust controller which achieves not only robust stability but also an performance robustness for linear uncertain discrete-time systems. The performance robustness means that comparing the transient behavior of the uncertain system with a desired one generated by the nominal system, the deterioration of control performance (i.e. the error between the real response and the desired one) is suppressed without excessive control input. The control law consists of a state feedback law for the nominal system and a compensation input given by a feedback form of an estimated error signal. In this paper, we show that conditions for the existence of the observer-based controller are given in terms of linear matrix inequalities (LMIs). Finally, a numerical example is given to illustrate the proposed technique.

  • PDF

Chaotifying a Continuous-Time TS Fuzzy System with Time-Delay (시간 지연을 이용한 연속시간 TS 퍼지 시스템의 카오스화)

  • Kim, Taek-Ryong;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2215-2217
    • /
    • 2004
  • In this paper, a systematic design approach based on the parallel distributed compensation technique is proposed for chaotifying a general continuous-time Takagi-Sugeno (TS) fuzzy system. The fuzzy parallel distributed compensation controller (FPDCC) is composed of the feedback gain and time-delay feedback. The verification of chaos in the controlled continuous-time TS fuzzy system is done by the following procedures. First, we establish an asymptotically approximate relationship between a time-delay continuous-time TS fuzzy system and a discrete-time TS fuzzy system. Then, Marotto theorem is applied. Therefore, the generated chaos is in the sense of Li and Yorke. The boundedness in the controlled continuous-time TS fuzzy system is also proven via its associated discrete-time TS fuzzy system.

  • PDF

A study on the power system stabilizer using discrete-time adaptive sliding mode control (이산 적응슬라이딩 모드 제어를 이용항 전력계통 안정화 장치에 관한 연구)

  • Park, Young-Moon;Kim, Wook
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 1996
  • In this paper the newly developed discrete-time adaptive sliding mode control method is proposed and applied to the power system stabilization problem. In contrast to the conventional continuous-time sliding mode controller, the proposed method is developed in the discrete-time domain and based on the input/output measurements instead of the continuous-time and the full-states feedback, respectively. Because the proposed control method has the adaptivity property in addition to the natural robustness property of the sliding mode control, it is possible to design the power system stabilizer which can overcome both the minor variations of the parameters of the power system and the diverse operating conditions and faults of the power system. Mathematical proof and the various computer simulations are done to verify the performance and stability of the proposed method.

  • PDF

Design of Robust Controller for Electromagnetic Suspension System with Kalman Filter (칼만 필터를 이용한 자기부상 시스템의 강인제어기 설계)

  • Jang, S.M.;Sung, S.Y.;Sung, H.K.;Jo, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1411-1413
    • /
    • 2000
  • Distubance of air-gap sensors by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension (EMS) systems. Thus, this paper proposes the output feedback controller with discrete kalman filter for the EMS systems. The discrete kalman filter estimate true state value and output feedback controller guarantee stability. The benefit of this scheme are shown by simulation. Therefore air-gap disturbance are rejected successfully.

  • PDF

Decentralized Stabilization of a Class of Large Scale Discrete-time Systems Subject to System Parameter Uncertainties (시스템파라미터가 불확실한 대규모 선형 이산시간 시스템의 비집중 안정화에 관한 연구)

  • Lyou, Joon;Yoon, Myung-Joong;Chung, Myung-Jin;Bien, Zeungnam
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.3
    • /
    • pp.89-96
    • /
    • 1985
  • This paper presents a decentralized adaptive scheme to stabilize a class of large-scale discrete-time linear systems subject to system parameter uncertainties. The scheme combines an adaptive nonlinear feedback control for compensating some effects by unknown system parameters and the exact model-based linear feedback control for overriding the unfavorable effects by interconnections. A condition of stability is derived, under which the overall adaptive system is assured to be globally stable. Also, a numerical example is provided to illustrate the feasibility of the scheme.

  • PDF