• Title/Summary/Keyword: and discrete feedback

Search Result 244, Processing Time 0.027 seconds

Receding Horizon Finite Memory Controls for Output Feedback Controls of Discrete-Time State Space Models

  • Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1896-1900
    • /
    • 2003
  • In this paper, a new type of output feedback control, called a receding horizon finite memory control (RHFMC), is proposed for stochastic discrete-time state space systems. Constraints such as linearity and finite memory structure with respect to an input and an output, and unbiasedness from the optimal state feedback control are required in advance. The proposed RHFMC is chosen to minimize an optimal criterion with these constraints. The RHFMC is obtained in an explicit closed form using the output and input information on the recent time interval. It is shown that the RHFMC consists of a receding horizon control and an FIR filter. The stability of the RHFMC is investigated for stochastic systems.

  • PDF

Adaptive control of overmodeled linear time-invariant discrete systems (과모델된 선형 시불변 이산 시간 시스템의 적응 제어법칙)

  • Yang, Hyun-Suk;Lee, Ho-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 1996
  • This paper presents a parameter adaptive control law that stabilizes and asymptotically regulates any single-input, linear time-invariant, controllable and observable, discrete-time system when only the upper bounds on the order of the system is given. The algorithm presented in this paper comprises basically a nonlinear state feedback law which is represented by functions of the state vector in the controllable subspace of the model, an adaptive identifier of plant parameters which uses inputs and outputs of a certain length, and an adaptive law for feedback gain adjustment. A new psedu-inverse algorithm is used for the adaptive feedback gain adjustment rather than a least-square algorithm. The proposed feedback law results in not only uniform boundedness of the state vector to zero. The superiority of the proposed algorithm over other algorithms is shown through some examples.

  • PDF

Hierarchical State Feedback Control of Large-Scale Discrete-Time Systems with Time-Delays (시간지연이 있는 대규모 이산시간 시스템의 계층적 상태궤환제어)

  • 김경연;전기준
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1161-1166
    • /
    • 1989
  • In this paper, a hierarchical state feedback control method is proposed for the optimal tracking of large-scale discrete-time systems with time-delays. The state feedback gain matrix and the compensation vector are computed from the optimal trajectories of the state variables and control inputs obtained hierarchically by the open-loop control method based on the interaction prediction method. The resulting feedback gain matrix and the compensation vector are optimal for the given initial condition. Computer simulation results show that the proposed method has better control performance and fewer second level iterations than the Tamura method.

  • PDF

H$\infty$ State Feedback Control for Generalized Continuous/Discrete Time Delay System

  • Kim, Jong-Hae;Jeung, Eun-Tae;Lee, Sang-Kyung;Park, Hong-Bae
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.163-169
    • /
    • 1998
  • In this paper, we consider the problem of designing H$\infty$ state feedback controller for the generalized time systems with delayed states and control inputs in continuous and discrete time cases, respectively. The generalized time delay system problems are solved on the basis of LMI(linear matrix inequality) technique considering time delays. The sufficient condition for the existence of controller and H$\infty$ state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be rewritten as a LMI form in terms of transformed variables. The propose controller design method can be extended into the problem of robust H$\infty$ state feedback controller design method easily.

  • PDF

Exponential Stability of Predictor Feedback for Discrete-Time Linear Systems with Input Delays (입력 지연을 갖는 이산시간 선형 시스템을 위한 예측기 피드백의 지수적 안정성)

  • Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.583-586
    • /
    • 2013
  • We consider discrete-time LTI (Linear Time-Invariant) systems with constant input delays. The input delay is modeled by a first-order PdE (Partial difference Equation) and a backstepping transformation is employed to design a predictor feedback controller. The backstepping approach results in the construction of an explicit Lyapunov function, with which we prove the exponential stability of the closed-loop system formed by the predictor feedback. The numerical example demonstrates the design of the predictor feedback controller, and illustrates the validity of the exponential stability.

Control of Discrete Time Nonlinear Systems with Input Delay (입력지연을 갖는 이산 시간 비선형 시스템의 제어)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.509-512
    • /
    • 2012
  • This paper presents the state feedback control design for discrete time nonlinear systems where there exists a time delay in input. It is shown that under some boundedness condition, the time delay nonlinear systems can be transformed into the time delay linear systems with time varying parameters. Sufficient conditions for existence of stabilizing state feedback controller are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Optimal output feedback design for discrete large scale systems with two time-scale separation properties

  • Jin, Jong-Sam;Kim, Soo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.203-208
    • /
    • 1987
  • Design problem of output feedback controllers for discrete large scale systems using simplified model is investigated. It is shown that neglecting fast modes does not generally guarantee the stability of the closed loop system. In this paper, the design procedure is proposed to stabilize the system by minimizing a quadratic cost function for the simplified model and a measure of stability for the neglected fast model.

  • PDF

Analytic Design of Feedback Controller for Discrete Systems (이산씨스템에서의 피이드백 제어기의 해석적 설계)

  • Myoung Sam Ko
    • 전기의세계
    • /
    • v.20 no.4
    • /
    • pp.17-22
    • /
    • 1971
  • This paper deals with the analytic structure of feedback controller for linear time invariant discrete systems. On the way of developing the deadbeat controller, some necessary conditions for control policy have been derived. In the case of time delay, it was proved that the q periods delay in the control causes q periods delay in the point at which deadbeat response occurs. Theorems and conclusions are illustrated with some simple nontrivial numerical examples and signal state tracking application problems.

  • PDF

Fuzzy Output-Feedback Controller Design for PEMFC: Discrete-time Nonlinear Interconnected Systems with Common Inputs Approach (고분자 전해질 연료전지 시스템의 퍼지 출력 궤환 제어기 설계: 공통 입력을 갖는 이산시간 비선형 상호결합 시스템 접근)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.851-856
    • /
    • 2011
  • In this paper, the fuzzy output-feedback controller is addressed for a discrete-time nonlinear interconnected systems with common input. The nonlinear interconnected system is represented by a T-S (Takagi-Sugeno) fuzzy model. Based on T-S fuzzy interconnected system, the fuzzy output-feedback controller is designed with common input. The stability condition of the closed-loop system is represented to the LMI (Linear Matrix Inequality) form. PEMFC model is given to show the verification of the controller discussed throughout the paper.

Design of discrete-time integral controllers for non-minimum phase plants via LTR techniques

  • Guo, Hai-Jiao;Ishihara, Tadashi;Takeda, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.622-627
    • /
    • 1994
  • In this paper, we discuss an application of LTR techniques to integral controller design for discrete-time non-minimum phase plant models. It is shown that the feedback property obtained by enforcing the conventional LTR procedure can be achieved by the partial LTR technique. In addition, we point out that the partial LTR technique provides more design freedom in shaping a target feedback property.

  • PDF