• Title/Summary/Keyword: and Public Effluents

Search Result 35, Processing Time 0.023 seconds

Assessment of Korean Water Quality Standards for Effluent Discharged from the Dye Industry Based on Acute Aquatic Toxicity Tests Using Microbes and Macroinvertebrates (염색폐수의 수질독성시험을 이용한 한국의 수질배출허용기준 평가연구)

  • Kim, Young-Hee;Lee, Min-Jung;Choi, Kyung-Ho;Eo, Soo-Mi;Lee, Hong-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.185-190
    • /
    • 2004
  • Acute aquatic toxicity of effluents discharged from five dyeing plants in Gyeong-gi province were evaluated to assess whether the current Korean water quality standards(KWQS) could protect aquatic life. Chemical analyses of all parameters regulated under KWQS, except for E-coli, were also carried out to determine regulation compliance of the samples. All the effluent samples were satisfied with KWQS except for the color in only one sample. In acute Daphnia magna toxicity tests, significant mortality was observed in one of five samples and EC50 was 12.1%(95% confidence interval 9.1-16.2), which was in compliance with KWQS. The result of the Microtox assay indicated that acute microbial toxicity existed in effluents from three out of five plants, two of which were in compliance with KWQS. The agreement between regulation compliance of chemical concentrations of effluent and observed toxicity from various biological toxicity tests was very poor to fair (kappa = 0.194~0.250). The data presented suggest that exposure to dyeing wastewater which were in compliance with Korean water quality standards may not be safe to aquatic biota, and multiple tropical levels should be considered in aquatic toxicity monitoring of dyeing industry.

A Preliminary Establishment of Dose Constraints for the Member of Public Taking into Account Multi-unit Nuclear Power Plants in Korea (국내 복수호기 원전 운영을 고려한 일반인 선량제약치 설정에 대한 고찰)

  • Kong, Tae-Young;Choi, Jong-Rack;Son, Jung-Kwon;Kim, Hee-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.129-137
    • /
    • 2012
  • In the 2007 recommendation, the ICRP evolves from the previous process-based system of practices and intervention to the system based on the characteristics of radiation exposure situation. In addition, ICRP recommends the application of source-related dose constraints under the planned exposure situation as a tool for the optimization of protection to workers and the member of public. In this study, the analysis of radioactive effluents from Korean nuclear power plants and the public dose assessment were conducted in reference with the use of dose constraints. Finally, the measure to implement the dose constraints for the member of public was suggested taking into account multi-unit reactors operating at a single site in Korea.

An Effects of Radiation Dose Assessment for Radiation Workers and the Member of Public from Main Radionuclides at Nuclear Power Plants (원전에서 발생하는 주요 방사성핵종들이 방사선작업종사자와 원전 주변주민의 피폭방사선량 평가에 미치는 영향)

  • Kim, Hee-Geun;Kong, Tae-Young;Jeong, Woo-Tae;Kim, Seok-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.12-20
    • /
    • 2010
  • In a primary system at nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water conditions. Particularly, $^3H,\;^{14}C,\;^{58}Co,\;^{60}Co,\;^{137}Cs,\;and^{131}I$ are important radionuclides in respect of dose assessment for radiation workers and management of radioactive effluents. In this paper, the dominant contributors of radiation exposure for radiation workers and the member of public adjacent to NPPs were reviewed and the process of dose assessment attributable to those contributors were introduced. Furthermore, the analysis for some examples of radiation exposure to radiation workers and the public during the NPP operation was carried out. This analysis included the notable precedents of internal radiation exposure and contamination of demineralized water occurred in Korean NPPs. Particularly, the potential issue about the dose assessment of tritium and carbon-14 was also reviewed in this paper.

Radiological Dose Analysis to the Public Resulting from the Operation of Daedeok Nuclear Facilities (대덕부지 원자력관련시설 운영에 따른 주민피폭선량 현황분석)

  • Jeong, Hae Sun;Kim, Eun Han;Jeong, Hyo Joon;Han, Moon Hee;Park, Mi Sun;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • This paper describes the results of assessment of radiological dose resulting from operation of the Daedeok nuclear facilities including the HANARO research reactor, which has been performed to assure whether or not to comply with the regulation standards of the radioactive effluents releases. Based on the meteorological data and the radiation source term, the maximum individual doses were evaluated from 2010 to 2012. The atmospheric dispersion and the deposition factors of gaseous effluents were calculated using the XOQDOQ computer code. ENDOS-G and ENDOS-L code systems were also used for maximum individual dose calculation from gaseous and liquid effluents, respectively. The results were compared with the regulation standards for the radioactive effluents presented by the Nuclear Safety and Security Commission (NSSC). The effective doses and the thyroid doses of the maximum individual were calculated at the maximum exposed point in the Daedeok site, and contributions of exposure pathways to the radiological doses resulting from gaseous and liquid radioactive effluents were evaluated at each facility of the Daedeok site. As a result, the maximum exposed age was analysed to be the child group, and the operation of HANARO research reactor had a major effect more than 90% on the individual doses. The main exposure pathways for gaseous radioactive effluent were from ingestion and inhalation. The effective doses and the thyroid doses were considerably influenced by tritium and iodine, respectively. The gaseous radioactive effluents contributed more than 90% on the total doses, whereas the contributions of the liquid radioactive effluents were relatively low. Consequently, the maximum individual dose due to radioactive effluents from the nuclear facilities within the Daedeok site were less than 3% of the regulation standard over 3 years; therefore, it can be concluded that radioactive effluents from the nuclear facilities were well managed, with the radiation-induced health detriment for residents around the site being negligible.

Comparison of Off-site Radiological Dose Due to the Routine Release of Gaseous Radioactive Effluents Based on the Korean and Japanese Regulatory Recommendations

  • Hwang, Won Tae;Kim, Chang Lak;Lee, Cheol-Woo;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.161-165
    • /
    • 2019
  • Background: Not only regulatory framework including radiation protection quantities and regulatory standards, but also methodology for regulatory compliance may be different in each country due to inherent philosophy for radiation protection. Materials and Methods: Based on the Korean regulatory models, off-site radiological dose resulting from the routine releases of gaseous radioactive effluents was calculated by applying the parameter values and assumptions recommended in the Korean and Japanese regulations. Results and Discussion: Effective dose for adult based on the Korean recommendation were 17.5 and 1.6 times higher than those of Japanese recommendation for 131I and 133I, respectively, for the same atmosphere dispersion and ground deposition factors. Conclusion: It was due to different parameter values and assumptions recommended for the purpose of evaluating compliance with dose criteria for the radiation protection of the public in each country.

A Study on Annual Release Objectives and Annual Release Limits of Gaseous Effluents During Decommissioning of Nuclear Power Plants (원전 해체 시 기체상 유출물의 연간 방출관리치 및 방출한도치에 관한 연구)

  • Lee, Seung-Hee;Hwang, Won-Tae;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.299-311
    • /
    • 2019
  • Decommissioning is a critical issue in Korea. Although compared with the operation of nuclear power plants the release of radioactive materials during decommissioning is not expected to be significant, residents should always be protected from radiation exposure. To manage this effectively, Annual Release Objectives (ARO) and Annual Release Limits (ARL) were derived from dose standards in the NSSC Notice and dose limit for the public. Based on meteorological data for the three years from 2008 to 2010 in the Shin Kori nuclear power plant site, atmospheric dispersion and ground deposition factors of gaseous effluent were evaluated using the XOQDOQ computer code. The exposure dose was evaluated using the ENDOS-G computer code. Because of differences in radiological sensitivity according to age groups, the results of Annual Release Objectives (ARO) and Annual Release Limits (ARL) showed significant differences depending on the radionuclides. The evaluation methodology of this study will provide meaningful information for radioactive effluent management for decommissioning of nuclear power plants.

Alarm Setpoint Determination Method of Gaseous Effluent Radiation Monitoring Systems Using Dose Factors Based on ICRP-60 Recommendations (선량환산인자를 이용한 기체유출물 RMS 경보설정 개선방안)

  • 박규준;김희근;하각현;엄희문
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.491-496
    • /
    • 2003
  • In Korea, the dose limits to the public were reduced according to ICRP-60 recommendations. The secondary quantities, Effluent Concentration Limits (ECLs) were derived and enacted to Korean Atomic Laws based on ICRP-60 recommendations. The Korea atomic laws require assurance that radioactive materials within gaseous effluents do not exceed dose limits and ECLs. This simply means that any effluent that would possibly contain radioactivity must be monitored. There are various methods to monitor the radioactivity of effluent monitor to satisfy the dose limits and the ECLs for gaseous effluents. The many factors (safety margin) should be considered in determining of the setpoint of effluent monitor, following these limits. In this study, we studied the determination method of alarm setpoint for gaseous effluent Radiation Monitoring Systems using dose factors considered the main pathway of radionuclides to compare the preceding determination method of alarm setpoint for gaseous effluent RMSs using dose assessment program considered all the practicable pathways of radionuclides.

  • PDF

The Discharge Characteristic of Micropollutants in Effluents from Major Sewage and Wastewater Treatment Facilities in GyeongSangBukdo (경상북도내 주요 하폐수처리장 방류수의 미량유해물질 배출특성)

  • Seo, Sang-Wook;Bae, Hun-Kyun
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.673-678
    • /
    • 2011
  • Water samples from several wastewater treatment plants and two industry drains in Gyeongsangbukdo were investigated for concentration levels of micropollutants. Samples were taken totally four times from May to November of 2008 and tested for seven factors including pesticide, 1,4-Dioxane and Perchlorate which had been big issues for Nakdong river because of their contaminations. As results, 2,4-D, Alachlor, and BEHA were not detected while BEHP was detected at some sampling sites. 1,4-Dioxane and Perchlorate were also detected in wide ranges from several sampling sites. Therefore, continuous supervising and monitoring systems needed to be invested for proper management for micropollutants since those micropollutants could affect human health and aquatic system with low concentration levels.

Quantitative Determination of PFOA and PFOS in the Effluent of Sewage Treatment Plants and in Han River (서울시 하수처리장 방류수 및 한강 내 PFOA와 PFOS의 과불화화합물 모니터링 연구)

  • Shin, Mi-Yeon;Im, Jong-Kwon;Kho, Young-Lim;Choi, Kyoung-Sik;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.334-342
    • /
    • 2009
  • Perfluorinated compounds (PFCs) have a wide range of domestic and industrial applications, but they are persistent in the environment. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) are among the metabolites of PFCs and occur at high concentration in the environment. Korea is the largest importer of PFC compounds in the world, therefore, the accumulation of these compounds is possible. In this study, the concentrations of PFOS and PFOA were determined in water samples taken from sewage treatment plants (STPs) and the Han River in Seoul, Korea. After extraction with a HLB cartridge, PFCs in the samples were analyzed by HPLC with an ion trap mass spectrometry in electrospray negative mode. Limits of detection was between 1 and 1.6 ng/l. The result showed that the concentrations of PFOS and PFOA in effluent and influent of the four STPs in Seoul were 60~570 ng/l, and not detected (nd)~254 ng/l, respectively. The levels of PFOS and PFOA were higher in the effluents which passed through the treatment process than in influent water samples which was against expectation. The concentration of PFOA and PFOS in the Han River was 60~570 ng/l and nd~254 ng/l, respectively. PFOA was detected in every sample, but PFOS was only detected in the downstreams of the Han River. This result indicates that there is comprehensive contamination of PFCs in the aquatic environment in Korea.

Mercury Biogeochemical Cycling and Bioaccumulation in Aquatic Environments: A Review

  • Kim, Eun-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.3
    • /
    • pp.180-183
    • /
    • 2007
  • Over the last century the mercury (Hg) concentration in the environment has been increased by human activities with inputs from sources such as atmospheric deposition, urban runoff, and industrial effluents. Mercury can be transformed to methylmercury (MeHg) in anaerobic conditions by sulfate reducing bacteria (SRB) and sediments are the principal location for MeHg production in aquatic environments. Interest in bioaccumulation of Hg and MeHg into lower trophic levels of benthic and pelagic organisms stems from public health concerns as these organisms provide essential links for higher trophic levels of food chains such as fish and larger invertebrates. Fish consumption is the major exposure route of MeHg to humans. Recently, it was reported that blood samples in Korea showed much higher Hg levels (5-8 times) than those in USA and Germany. Although this brings much attention to Hg research in Korea, there are very few studies on Hg biogeochemical cycling and bioaccumulation in aquatic environments. Given the importance of Hg methylation and MeHg transfer through food chains in aquatic environments, it is imperative that studies should be done in much detail looking at the fate, transport, and bioaccumulation of Hg and MeHg in the environment. Moreover, there should be long-term monitoring plans in Korea to evaluate the environmental and health effects of Hg and MeHg.