Network coding has been shown to improve various performance metrics in network systems. However, if network coding is implemented as software a huge time delay may be incurred at encoding/decoding stage so it is imperative for network coding to be parallelized to reduce time delay when encoding/decoding. In this paper, we compare the performance of parallelized decoders for random linear network coding (RLC) and pipeline network coding (PNC), a recent development in order to alleviate problems of RLC. We also compare multi-threaded algorithms on multi-core CPUs and massively parallelized algorithms on GPGPU for PNC/RLC.
Recently, in the field of computer animation, a method for generating motion using deep learning has been studied away from conventional finite-state machines or graph-based methods. The expressiveness of the network required for learning motions is more influenced by the diversity of motion contained in it than by the simple length of motion to be learned. This study aims to find an efficient network structure when the types of motions to be learned are diverse. In this paper, we train and compare three types of networks: basic fully-connected structure, mixture of experts structure that uses multiple fully-connected layers in parallel, recurrent neural network which is widely used to deal with seq2seq, and transformer structure used for sequence-type data processing in the natural language processing field.
R-trees are widely used in various areas such as geographical information systems, CAD systems and spatial databases in order to efficiently index multi-dimensional data. As data sets used in these areas grow in size and complexity, however, range query operations on R-tree are needed to be further faster to meet the area-specific constraints. To address this problem, there have been various research efforts to develop strategies for acceleration query processing on R-tree by using the buffer mechanism or parallelizing the query processing on R-tree through multiple disks and processors. As a part of the strategies, approaches which parallelize query processing on R-tree through Graphics Processor Units(GPUs) have been explored. The use of GPUs may guarantee improved performances resulting from faster calculations and reduced disk accesses but may cause additional overhead costs caused by high memory access latencies and low data exchange rate between GPUs and the CPU. In this paper, to address the overhead problems and to adapt GPUs efficiently, we propose a novel approach which uses a GPU as a buffer to parallelize query processing on R-tree. The use of buffer algorithm can give improved performance by reducing the number of disk access and maximizing coalesced memory access resulting in minimizing GPU memory access latencies. Through the extensive performance studies, we observed that the proposed approach achieved up to 5 times higher query performance than the original CPU-based R-trees.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.1
/
pp.726-734
/
2015
Relational databases used by structuralizing data are the most widely used in data management at present. However, in relational databases, service becomes slower as the amount of data increases because of constraints in the reading and writing operations to save or query data. Furthermore, when a new task is added, the database grows and, consequently, requires additional infrastructure, such as parallel configuration of hardware, CPU, memory, and network, to support smooth operation. In this paper, in order to improve the web information services that are slowing down due to increase of data in the relational databases, we implemented a model to extract a large amount of data quickly and safely for users by processing Hadoop Distributed File System (HDFS) files after sending data to HDFSs and unifying and reconstructing the data. We implemented our model in a Web-based civil affairs system that stores image files, which is irregular data processing. Our proposed system's data processing was found to be 0.4 sec faster than that of a relational database system. Thus, we found that it is possible to support Web information services with a Hadoop-based big data processing technique in order to process a large amount of data, as in conventional relational databases. Furthermore, since Hadoop is open source, our model has the advantage of reducing software costs. The proposed system is expected to be used as a model for Web services that provide fast information processing for organizations that require efficient processing of big data because of the increase in the size of conventional relational databases.
KIPS Transactions on Software and Data Engineering
/
v.6
no.1
/
pp.1-8
/
2017
Given a multi-dimensional dataset of tuples, a skyline query returns a subset of tuples which are not 'dominated' by any other tuples. Skyline query is very useful in Big data analysis since it filters out uninteresting items. Much interest was devoted to the MapReduce-based parallel processing of skyline queries in large-scale distributed environment. There are three requirements to improve parallelism in MapReduced-based algorithms: (1) workload should be well balanced (2) avoid redundant computations (3) Optimize network communication cost. In this paper, we introduce MR-SEAP (MapReduce sample Skyline object Equality Angular Partitioning), an efficient angular space partitioning based skyline query processing using sampling-based pruning, which satisfies requirements above. We conduct an extensive experiment to evaluate MR-SEAP.
Purpose : Patient motion during magnetic resonance (MR) imaging is one of the major problems due to its long scan time. Entropy based post-processing motion correction techniques have been shown to correct motion artifact effectively. One of main limitations of these techniques however is its long processing time. In this study, we propose several methods to reduce this long processing time effectively. Materials and Methods : To reduce the long processing time, we used the separability property of two dimensional Fourier transform (2-D FT). Also, a computationally light metric (sum of all image pixel intensity) was used instead of the entropy criterion. Finally, partial Fourier reconstruction, in particular the projection onto convex set (POCS) method, was combined thereby reducing the size of the data which should be processed and corrected. Results : Time savings of each proposed method are presented with different data size of brain images. In vivo data were processed using the proposed method and showed similar image quality. The total processing time was reduced to 15% in two dimensional images and 30% in the three dimensional images. Conclusion : The proposed methods can be useful in reducing image motion artifacts when only post-processing motion correction algorithms are available. The proposed methods can also be combined with parallel imaging technique to further reduce the processing times.
Viscoelastic instabilities are of fundamental importance to understanding the physics of complex fluids and of practical importance to materials processing and fluid characterization. Significant progress has been made over the past 15 years in understanding instabilities in viscoelastic flows with curved streamlines and is reviewed here. Taylor-Couette flow, torsional flow between a cone and plate, and torsional flow between parallel plates have received special attention due to both the basic significance of these flows and their critical role in rheometry. First, we review the criteria for determining when these flows become unstable due to elasticity in the absence of inertia, and discuss the generalization of these criteria to more complex flows with curved streamlines. Then, focusing on experiments and simulations in the Taylor-Couette problem, we review how thermal sensitivity (i.e., the dependence of fluid viscosity and elasticity on temperature) and inertia affect the stability of viscoelastic flows. Finally, we conclude with some general thoughts on unresolved issues and remaining challenges related to viscoelastic instabilities.
This paper proposes Echo canceller used in simultaneous two-way ('full-duplex') transmission of data signals over two-wire circuits which can be achieved by using a hybrid coupler. This Echo canceller uses sequential processing instead of parallel processing with conventional adaptive digital filter. This structure reduces the number of multipliers. Thus, this structure is much more suitable for IC implementation. This Echo canceller operates according to the 'Stochastic Iteration Algorithm(SIA).' SIA algorithm has merit of good performance and small hardware requirement.
As the power of hardware has improved, there have been numerous researches in processing concurrently using multitasking method. The incremental evaluation is the evaluation method of reevaluating only affected parts instead of reevaluating overall program when the program has been changed. It is necessary to do more studies that improve the efficiency of concurrent incremental evaluation to do multitasking using multi-threading of Java not to do in parallel using multiprocessor. In this paper, the dependency in the dependency chart is based on the attribute that describes the real value of the variable that directly affects the semantics, thereby doing efficient evaluation. So using the dependency, this paper presents the concurrent incremental evaluation algorithm for Java Languages and proves its correctness, analyzing the efficiency of concurrent incremental evaluation by the simulation.
Efficient utilization of processing resources in a large multicomputer system with the possibility of fault occurrence depends on the reliable processor management scheme. This paper presents a dynamic and reliable processor allocation strategy to increase the performance of mesh-connected parallel systems with faulty processors The basic idea is to reconfigure a faulty mesh system into a maximum convex system using the fault-free upper or lower boundary nodes to compensate for the non-boundary faulty nodes. To utilize the non-rectangular shaped system parts, our strategy tries to allocate L-shaped submeshes instead of signaling the allocation failure. Extensive simulations show that the strategy performs more efficiently than other strategies in terms of the job response time md the system utilization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.