• Title/Summary/Keyword: and LEED

Search Result 162, Processing Time 0.027 seconds

Electronic structure of the Au intercalated monolayer graphene on Ni(111)

  • Hwang, H.N.;Jee, H.G.;Han, J.H.;Tai, W.S.;Kim, Y.D.;Hwang, C.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.342-342
    • /
    • 2010
  • We have investigated an Au intercalated monolayer graphene on Ni(111) using angle-resolved photoemission spectroscopy (ARPES), high resolution photoemission spectroscopy (HRPES), and low energy electron diffraction (LEED) at the 3A2 ARUPS beamline in Pohang Accelerator Laboratory. We find the monolayer graphene is well grown on the Ni(111) surface by the adsorption of acetylene. However, the graphene does not show the characteristic $\pi$ band near the Fermi level due to its strong interaction with the underlying substrate. When Au is adsorbed on the surface and then annealed at high temperature, we observe that Au is intercalated underneath the monolayer graphene. The process of the Au intercalation was monitored by HRPES of corresponding Au 4f and C 1s core levels as well as the electronic structure of the $\sigma$, $\pi$ states at $\Gamma$, K points. The $\sigma$, $\pi$ bands of graphene shift towards the Fermi level and the $\pi$ band is clearly observed at K point after the intercalation of full monolayer Au. The full width at half maximum (FWHM) of the C 1s peak narrows to approximately 0.42 eV after intercalation. These results imply that the interaction between the graphene and substrate is considerably weakened after the Au intercalation. We will discuss the graphene is really closer to ideal free standing graphene suggested recently.

  • PDF

Adsorbate-induced reconstructions of $\times$2 surface (다양한 흡착자에 대한Si(113) $\times$2 표면의 상변화 연구)

  • 김학수;황찬국;김용기;김정선;박죵윤;김기정;강태희;김봉수
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.269-275
    • /
    • 1999
  • The phase transition on the surface which several adsorbates (K, Mg, etc.) are deposited was observed by Low Energy Electron Diffraction (LEED) and Reflection High Energy Electron Diffraction (RGEED). We took the photoelectron spectra from the valence and core level at several oxygen exposure. For oxygen adsorption, the surface state in valence spectra diminished concurrently with S1, S2 peaks in core level spectra and surface periodicity turned to 3$\times$2 by post-annealing. These results suggest that the phase transition from 3$\times$2 to 3$\times$ on the Si(113) at initial stage is induced by a rearrangement of atoms on the substrate, not by the formation of overlayer.

  • PDF

A Basic Study of the Development of Indoor Environment Assessment Items for Eco-Friendly Indoor Environment of Hospital (의료시설의 친환경적 실내환경 조성을 위한 국내 친환경건축물 인증기준 개발에 관한 기초연구)

  • Lim, Tae-Sub
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • As more serious environmental problems of buildings, many researchers have recognized the importance of preserving the environment where we live as well as a necessity of developing architecture with eco-environmentally. As a result, our country and some advanced countries have tried to solve these problems in that developed green building assessment tools for estimating environmental performance of buildings. Among many kinds of buildings, hospital which have been relation with human beings has been laking in basic raw materials of researching hospital's environment. Especially, there are few materials about indoor environment of hospital. So, the facilities of patients not only have to depend on the quality of natural environment but be also taken into account of patients. The purpose of this study is to prepare the basic data to develop the items of indoor environmental assessment for hospital to improve the quality of hospital's indoor environment. To come to a conclusion, we used a method of comparing domestic green building certification criteria, LEED v.2.2 and GBTool 2005. Then, we analyzed them for the case studies. Consequently, we could grasp basic data to assist in effecting domestic green building certification criteria for hopital. Furthermore, we have made a progressive research about setting grades of it.

Case Studies on Space Zoning and Passive Façade Strategies for Green Laboratories

  • Kim, Jinho
    • Architectural research
    • /
    • v.22 no.2
    • /
    • pp.41-52
    • /
    • 2020
  • Laboratory buildings with specialized equipment and ventilation systems pose challenges in terms of efficient energy use and initial construction costs. Additionally, lab spaces should have flexible and efficient layouts and provide a comfortable indoor research environment. Therefore, this study aims to identify the correlation between the facade of a building and its interior layout from case studies of energy-efficient research labs and to propose passive energy design strategies for the establishment of an optimal research environment. The case studies in this paper were selected from the American Institute of Architects Committee on the Environment Top Ten Projects and Leadership in Energy and Environmental Design (LEED) certified research lab projects. In this paper, the passive design strategies of space zoning, façade design devices to control heating and cooling loads were analyzed. Additionally, the relationships between these strategies and the interior lab layouts, lab support spaces, offices, and circulation areas were examined. The following four conclusions were drawn from the analysis of various cases: 1) space zoning for grouping areas with similar energy requirements is performed to concentrate similar heating and cooling demands to simplify the HVAC loads. 2) Public areas such as corridor, atrium, or courtyard can serve as buffer zones that employ passive solar design to minimize the mechanical energy load. 3) A balanced window-to-wall ratio (WWR), exterior shading devices, and natural ventilation systems are applied according to the space programming energy requirements to minimize the dependence on mechanical service. 4) Lastly, typical laboratory space zoning categories can be revised, reversed, and even reconfigured to minimize the energy load and adjust to the site context. This study can provide deep insights into various design strategies employed for construction of green laboratories along with intuitive arrangement of various building components such as laboratory spaces, lab support spaces, office spaces, and common public areas. The key findings of this study can contribute towards creating improved designs of laboratory facilities with reduced carbon footprint and greenhouse emissions.

Study on Design Considerations to Prevent Bird Collisions with Glass (조류 유리충돌 방지를 위한 디자인 개선방안에 관한 고찰)

  • Lee, Hyung-Sook
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.15 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • Bird collisions with glass are a substantial source of human-caused avian mortality. It has been estimated that between 100 million and 1 billion birds die in collisions with windows every year, and bird-window collisions can have a particularly serious impact on populations because glass is dangerous for strong, healthy, breeding adults. The purpose of this study are to address the bird-window collision issue and to provide suggestions for bird-safe development by reviewing precedent studies on bird collision and analyzing bird-friendly design guidelines. Typically reflections of the sky, clouds or trees on glass, green plants in lobbies, and lights attract and confuse both migrating and resident birds. Therefore birds fatally fly into the glass because they do not recognize that reflections are false and that glass is a barrier. Many cities such as Toronto, Chicago and New York have made efforts on reducing the bird collision by encouraging the creation of environmentally conscious and bird-safe buildings. The USGBC also introduced a bird-safety credit as part of its environmental certification process, called LEED. The results of the study presented that architects and builders can help reduce or prevent bird from collisions in both new construction and existing structures with creative use of design elements. The measures to reduce bird collisions include using glass with an embedded pattern, opaque or translucent films, decals, dot patterns, awnings, louvers, and grilles. Turning off lights after midnight during the spring and fall migrations can be part of the solution as well. In order to reduce bird mortality, the most important thing is to generate awareness of the issue among designers, builders, as well as the public. Also local governments need to develop bird-friendly design guidelines and planning mechanisms to encourage bird-safe development and building operation.

Use of Recycled Brick Masonry Aggregate (RBMA) and Recycled Brick Masonry Aggregate Concrete (RBMAC) in Sustainable Construction

  • Tara L. Cavalline;David C. Weggel;Dallas E. Schwerin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.390-390
    • /
    • 2013
  • Use of recycled aggregates in portland cement concrete construction can offer benefits associated with both economy and sustainability. Testing performed to date indicates that RBMA can be used as a 100% replacement for conventional coarse aggregate in concrete that exhibits acceptable mechanical properties for use in structural and pavement elements, including satisfactory performance in some durability tests. RBMAC is currently not used in any type of construction in the United States. However, use of RBMAC could become a viable construction strategy as sustainable building practices become the norm. Rating systems such as LEED offer points for reuse of building materials (particularly on-site) and use of recycled materials. If renovations at an existing facility call for the demolition of existing brick masonry constructions, the rubble could be included as RBMA in new concrete pavement, sidewalks, or curb and gutter. Other potential uses for RBMAC could include those in the precast concrete industry, particularly in architectural precast concrete applications. In addition to providing acceptable strength and economy, the color of RBMA could be an attractive component of architectural precast concrete panels or other façade components. This paper explores the feasibility of use of RBMAC in several types of sustainable construction initiatives, based upon the findings of previous work with RBMAC produced from construction and demolition waste from a case study site. Guidance for obtaining and using RBMA is presented, along with a summary of material properties of RBMAC that will be useful to construction professionals.

  • PDF

A study on Problems of the G-SEED Process and their Improvements - Focusing on case studies of office buildings - (녹색건축인증제도 진행과정의 문제점 및 개선방향 연구 - 업무시설 중심으로 -)

  • Jang, Hyun-Sook;Lee, Sang-Ho
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.91-99
    • /
    • 2014
  • Environmental issues have become gradually important around the globe, which has increased society needs for the environment-friendly construction. In an effort to realize the environmental protection and energy efficiency, the British BREEAM has been developed, which is followed by the USA LEED, Japanese CASBEE and other national certification systems based on their own conditions. In this end, the Republic of Korea has implemented its own certification system named GBCS(Green Building Certification System) in 2002, and now actively promoted the G-SEED(Green Standard for Energy and Environmental Design) after GBCS modifications and amendments. The purpose of this study is to identify possible problems to be encountered in the process of the G-SEED for office facilities and to provide relevant solutions. In this end, three office facilities have been selected, which had obtained the G-SEED. This study has analyzed reasons of change of assessment scores between the preliminary certification and the main certification phases, has identified problems through in-depth interviews with practicing professionals(design, construction, eco-friendly consulting firm) and then has reached a conclusion for improvements. This study will be possibly used as reference materials for improvements of the green building certification system, and further detailed studies on respective parts will be required for improvements.

An Environment-friendly Analysis of Hong-kong Environment-friendly Reuse Space (홍콩 친환경 재생공간의 친환경성 분석)

  • Kim, Sarah;Nam, Kyoung-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.3
    • /
    • pp.194-202
    • /
    • 2012
  • The purpose of this study is to extract environment-friendly planning elements to apply in Korea by putting together and reclassifying four foreign environment-friendly certification systems related to regeneration spaces - LEED in USA, CASBEE in Japan, BREEAM in England and BEAM in Hong Kong - and analyze and evaluate domestic and foreign spaces which were certified as Environment-friendly spaces in order to offer plan guidelines to raise awareness of the importance of environment-friendly elements in regeneration spaces and to encourage them. The concept and the characteristics of green building were studied through documentary survey. In addition, green certification system of the present domestic new spaces and foreign regeneration spaces was studied and assessment tools for indoor regenerated spaces-related green certification system were developed. With checklists which are developed in this study, level of going green of foreign spaces certified environment-friendly was assessed. Based on the results of this study, conclusions are as follows. As a result of case research of spaces-certified green of Hong-Kong's existing buildings with a developed checklist, application of general assessment part was all alike, but that of detailed assessment part was different. However, Hong Kong showed superiority in lighting energy saving, separate collection of recyclable domestic waste, recycling by-product and management. In addition, Hong Kong applied eco-friendly planning elements maintaining buildings in their condition as possible as it could with management, use of green program, replacement with high efficiency lighting, monitoring system, installation of recycling bins and energy saving by attaching reflective film.

  • PDF

BUILDING INFORMATION MODELING (BIM)-BASED DESIGN OF ENERGY EFFICIENT BUILDINGS

  • Cho, Chung-Suk;Chen, Don;Woo, Sungkwon
    • Journal of KIBIM
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • With the increased awareness of energy consumption as well as the environmental impact of building operations, architects, designers and planners are required to place more consideration on sustainability and energy performance of the building. To ensure most of those considerations are reflected in the building performance, critical design decisions should be made by key stakeholders early during the design development stage. The application of BIM during building energy simulations has profoundly improved the energy analysis process and thus this approach has gained momentum. However, despite rapid advances in BIM-based processes, the question still remains how ordinary building stakeholders can perform energy performance analysis, which has previously been conducted predominantly by professionals, to maximize energy efficient building performance. To address this issue, we identified two leading building performance analysis software programs, Energy Plus and IES (IES ), and compared their effectiveness and suitability as BIM-based energy simulation tools. To facilitate this study, we examined a case study on Building Performance Model (BPM) of a single story building with one door, multiple windows on each wall, a slab and a roof. We focused particularly on building energy performance by differing building orientation and window sizes and compared how effectively these two software programs analyzed the performance. We also looked at typical decision-making processes implementing building energy simulation program during the early design stages in the U.S. Finally, conclusions were drawn as to how to conduct BIM-based building energy performance evaluations more efficiently. Suggestions for further avenues of research are also made.

Variation of the surface structure of the Al / W(110) planes according to the substrate temperature and the coverage

  • Choi, Dae Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.156.2-156.2
    • /
    • 2016
  • The variation of the surface structure of the Al adsorbed W(110) planes according to the coverage and the substrate temperature has been investigated using LEED and ISS When the Al atoms were adsorbed on the W(110) surface at room temperature, a p($1{\times}1$) of the fcc (111) face were found at the coverage higher than 4 ML. When the substrate temperature was kept at 900 K during Al adsorption and the coverage was 1.0 ML, the surface revealed a p($1{\times}1$) of the bcc(110) face and when the coverage is 1.5 ML, the surface showed a p($1{\times}1$) of the bcc (110) face together with a p($1{\times}1$) double domain structure (fcc (111) face) rotated ${\pm}3^{\circ}$ from the [100] direction of the W(110) surface. When Al atoms were adsorbed on the W(110) surface at the substrate temperature of 1000 K and the coverage was higher than 1.0 ML, the surface revealed a p($1{\times}1$) of the bcc(110) face together with p($1{\times}1$) double domain structure(fcc(111) face) rotated ${\pm}3^{\circ}{\sim}5^{\circ}$ from the [100] direction of the W(110) surface. When Al atoms were adsorbed on the W(110) surface at the substrate temperature of 1100 K and the coverage was 0.5 ML, Al atoms formed a p($2{\times}1$) double domain structure When the coverage was 1.0 ML, the double domain hexagonal structure (fcc(111) face) rotated ${\pm}5^{\circ}$ from the [100] direction of the W(110) surface and another distorted hexagonal structure was found. Low-energy electron diffraction results along with ion scattering spectroscopy results showed that the Al atoms followed the Volmer-Weber growth mode at high temperature.

  • PDF