• 제목/요약/키워드: and Field effect mobility

검색결과 493건 처리시간 0.028초

나노결정 InGaZnO 산화물 박막트랜지스터와 비결정 InGaZnO 산화물 박막트랜지스터의 소자 신뢰성에 관한 비교 연구 (Comparison of Stability on the Nano-crystalline Embedded InGaZnO and Amorphous InGaZnO Oxide Thin-film Transistors)

  • 신현수;안병두;임유승;김현재
    • 한국전기전자재료학회논문지
    • /
    • 제24권6호
    • /
    • pp.473-479
    • /
    • 2011
  • In this paper, we have compared amorphous InGaZnO (a-IGZO) thin-film transistor (TFT) with the nano-crystalline embedded-IGZO ($N_c$-embedded-IGZO) TFT fabricated by solid-phase crystallization (SPC) technique. The field effect mobility (${\mu}_{FE}$) of $N_c$-embedded-IGZO TFT was 2.37 $cm^2/Vs$ and the subthreshold slope (S-factor) was 0.83 V/decade, which showed lower performance than those of a-IGZO TFT (${\mu}_{FE}$ of a-IGZO was 9.67 $cm^2/Vs$ and S-factor was 0.19 V/decade). This results originated from generation of oxygen vacancies in oxide semiconductor and interface between gate insulator and semiconductor due to high temperature annealing process. However, the threshold voltage shift (${\Delta}V_{TH}$) of $N_c$-embedded-IGZO TFT was 0.5 V, which showed 1 V less shift than that of a-IGZO TFT under constant current stress during $10^5$ s. This was because there were additionally less increase of interface trap charges in Nc-embedded-IGZO TFT than a-IGZO TFT.

RF 마그네트론 스퍼터링법으로 상온 증착된 비정질 ITZO 산화물의 전기적 및 광학적 특성 (Electrical and Optical Properties of Amorphous ITZO Deposited at Room Temperature by RF Magnetron Sputtering)

  • 이기창;조광민;이준형;김정주;허영우
    • 한국표면공학회지
    • /
    • 제47권5호
    • /
    • pp.239-243
    • /
    • 2014
  • The electrical and optical properties of amorphous In-Tin-Zinc-Oxide(ITZO) deposited at room temperature using rf-magnetron sputtering were investigated. The amorphous ITZO thin films were obtained at the composition of In:Sn:Zn = 6:2:2, 4:3:3, and 2:4:4, but the ITZO (8:1:1) showed a crystalline phase of bixbyite structure of In2O3. The resistivity of ITZO could be controlled by oxygen pressure in the sputtering ambient. The resistivity of post-annealed ITZO thin films exhibited the dependence on the amount of Indium. Optical energy band gap and transmittance increased as the amount of indium in ITZO increased. For the device application with ITZO, the bottom-gated thin-film transistor using ITZO as a active channel layer was fabricated. It showed a threshold voltage of 1.42V and an on/off ratio of $5.63{\times}10^7$ operated with saturation field-effect mobility of $14.2cm^2/V{\cdot}s$.

$CuInSe_2$ 단결정 박막 성장과 광전류 특성 (Properties of Photocurrent and Growth of $CuInSe_2$ single crystal thin film)

  • S.H. You;K.J. Hong
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.83-83
    • /
    • 2003
  • The stochiometric mix of evaporating materials for the CuInSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuInSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 62$0^{\circ}C$ and 41$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CuInSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are 9.62$\times$10$^{16}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 6.1 meV and 175.2 meV at 10 K, respectively. From the photoluminescence measurement on CuInSe$_2$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 7 meV and 5.9 meV, respectivity. By Haynes rule, an activation energy of impurity was 59 meV.

  • PDF

유기반도체 트랜지스터의 유전체 표면처리 효과 (Dielectric Surface Treatment Effects on Organic Thin-film Transistors)

  • 임상철;김성현;이정헌;구찬회;김도진;정태형
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.202-208
    • /
    • 2005
  • The surface states of gate dielectrics affect device performance severely in Pentacene OTFTs. We have fabricated organic thin-film transistors (OTFTs) using pentacene as an active layer with chemically modified $SiO_2$ gate dielectrics. The effects of the surface treatment of $SiO_2$ on the electric characteristics of OTFTS were investigated. The surface of $SiO_2$ gate dielectric was treated by normal wet cleaning process, $O_2-plasma$ treatment, hexamethyldisilazane (HMDS), and octadecyltrichlorosilane (OTS) treatment. After the surface treatments, the contact angles and surface free energies were measured in order to analyze the surface state changes. In the electrical measurements, typical I-V characteristics of TFTs were observed. The field effect mobility, $\mu$, was calculated to be $0.29\;cm^2V^{-1}s^{-1}$ for OTS treated sample while those for the HMDS, $O_2$ plasma treated, and wet-cleaned samples were 0.16, 0.1, and $0.04\;cm^2V^{-1}s^{-1}$, respectively.

Development of a New Hybrid Silicon Thin-Film Transistor Fabrication Process

  • Cho, Sung-Haeng;Choi, Yong-Mo;Kim, Hyung-Jun;Jeong, Yu-Gwang;Jeong, Chang-Oh;Kim, Shi-Yul
    • Journal of Information Display
    • /
    • 제10권1호
    • /
    • pp.33-36
    • /
    • 2009
  • A new hybrid silicon thin-film transistor (TFT) fabrication process using the DPSS laser crystallization technique was developed in this study to realize low-temperature poly-Si (LTPS) and a-Si:H TFTs on the same substrate as a backplane of the active-matrix liquid crystal flat-panel display (AMLCD). LTPS TFTs were integrated into the peripheral area of the activematrix LCD panel for the gate driver circuit, and a-Si:H TFTs were used as a switching device of the pixel electrode in the active area. The technology was developed based on the current a-Si:H TFT fabrication process in the bottom-gate, back-channel etch-type configuration. The ion-doping and activation processes, which are required in the conventional LTPS technology, were thus not introduced, and the field effect mobility values of $4\sim5cm^2/V{\cdot}s$ and $0.5cm^2/V{\cdot}s$ for the LTPS and a-Si:H TFTs, respectively, were obtained. The application of this technology was demonstrated on the 14.1" WXGA+(1440$\times$900) AMLCD panel, and a smaller area, lower power consumption, higher reliability, and lower photosensitivity were realized in the gate driver circuit that was fabricated in this process compared with the a-Si:H TFT gate driver integration circuit

P3HT와 IZO 전극을 이용한 thin film transistors 제작 (Fabricated thin-film transistors with P3HT channel and $NiO_x$ electrodes)

  • 강희진;한진우;김종연;문현찬;박광범;김태하;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.467-468
    • /
    • 2006
  • We report on the fabrication of P3HT-based thin-film transistors (TFT) that consist of indium-zinc-oxide (IZO), PVP (poly-vinyl phenol), and Ni for the source-drain (S/D) electrode, gate dielectric, and gate electrode, respectively. The IZO S/D electrodes of which the work function is well matched to that of P3HT were deposited on a P3HT channel by thermal evaporation of IZO and showed a moderately low but still effective transmittance of ~25% in the visible range along with a good sheet resistance of ${\sim}60{\Omega}/{\square}$. The maximum saturation current of our P3HT-based TFT was about $15{\mu}A$ at a gate bias of -40V showing a high field effect mobility of $0.05cm^2/Vs$ in the dark, and the on/off current ratio of our TFT was about $5{\times}10^5$. It is concluded that jointly adopting IZO for the S/D electrode and PVP for gate dielectric realizes a high-quality P3HT-based TFT.

  • PDF

용액공정용 불소 도핑된 인듐 갈륨 징크 산화물 반도체의 박막 트랜지스터 적용 연구 (Solution-Processed Fluorine-Doped Indium Gallium Zinc Oxide Channel Layers for Thin-Film Transistors)

  • 정선호
    • 마이크로전자및패키징학회지
    • /
    • 제26권3호
    • /
    • pp.59-62
    • /
    • 2019
  • 본 논문은 용액공정용 불소 도핑된 인듈 갈륨 징크 산화물 반도체를 연구하였으며, 박막 트랜지스터 적용 가능성을 확인하였다. 용액형 산화물 반도체를 형성하기 위해, 금속염 전구체 기반 용액을 제조하였으며, 추가적인 불소 도핑을 유도하기 위해 화학적 첨가제로서 암모늄 플로라이드를 이용하였다. 열처리 온도 및 불소 도핑양에 따른 전기적 물성을 고찰함으로서, 300도 저온 열처리를 통해 제조된 산화물 반도체층의 전기적 특성을 향상시켰다. 20 mol% 불소를 도핑하는 경우, $1.2cm^2/V{\cdot}sec$의 이동도 및 $7{\times}10^6$의 점멸비 특성이 발현 가능함을 확인하였다.

Highly Efficient Multi-Functional Material for Organic Light-Emitting Diodes; Hole Transporting Material, Blue and White Light Emitter

  • Kim, Myoung-Ki;Kwon, Jong-Chul;Hong, Jung-Pyo;Lee, Seong-Hoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.2899-2905
    • /
    • 2011
  • We have demonstrated that TPyPA can be used as an efficient multi-functional material for OLEDs; hole transporting material (HTL), blue and white-light emitter. The device based on TPyPA as the HTL exhibited an external quantum efficiency of 1.7% and a luminance efficiency of 4.2 cd/A; these values are 40% higher than the external quantum efficiency and luminance efficiency of the NPD-based reference device. The device based on TPyPA as a blue-light emitter exhibited an external quantum efficiency of 4.2% and a luminance efficiency of 5.3 $cdA^{-1}$ with CIE coordinates at (0.16, 0.14), the device based on TPyPA as a white-light emitter exhibited an external quantum efficiency of 3.2% and a luminance efficiency of 7.7 $cdA^{-1}$ with CIE coordinates at (0.33, 0.39). Also, TPyPA-based organic solar cell (OSC) exhibited a maximum power conversion efficiency of 0.35%. TPyPA-based organic thin-film transistors (OTFTs) exhibited highly efficient field-effect mobility (${\mu}_{FET}$) of $1.7{\times}10^{-4}cm^2V^{-1}s^{-1}$, a threshold voltage ($V_{th}$) of -15.9 V, and an on/off current ratio of $8.6{\times}10^3$.

Ku 대역용 주파수변환기의 구현 (Implementation of Down Converter for Ku-Band Application)

  • 정동근;김상태;하천수
    • 한국정보통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.527-536
    • /
    • 2000
  • 본 논문에서는 마이크로파용의 전계효과 트랜지스터를 사용한 저잡음 주파수 변환기의 설계에 대하여 논의한다. 높은 안정도의 유전체공진기를 사용하였고 중간주파수단에서 불필요한 발진을 막기위해 대역통과 여파기를 사용하였다. 공진 주파수가 12.3GHz인 마이크로스트립 안테나를 믹서와 함께 동일한 기판 위에 집적시켰으며 고전자 이동 트랜지스터 3개를 사용한 저잡음 증폭기를 안테나 뒤에 부가하였다. 국부발진기의 출력주파수는 Ku 대역용으로서 11.3GHz로 하였다. 측정결과 12.0GHz에서 12.7GHz에 걸쳐 약 7~12dB의 이득을 보였으며, 중간주파수단에서의 잡음지수는 6dB이었다. 설계된 모델은 다이오드형 믹서에 비해 변환손실이 적었으며, 디지털 방송 및 통신시스템에 적용될 수 있을 것이다.

  • PDF

Influence of Oxygen Partial Pressure on ZnO Thin Films for Thin Film Transistors

  • Kim, Jae-Won;Kim, Ji-Hong;Roh, Ji-Hyoung;Lee, Kyung-Joo;Moon, Sung-Joon;Do, Kang-Min;Park, Jae-Ho;Jo, Seul-Ki;Shin, Ju-Hong;Yer, In-Hyung;Koo, Sang-Mo;Moon, Byung-Moo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.106-106
    • /
    • 2011
  • Recently, zinc oxide (ZnO) thin films have attracted great attention as a promising candidate for various electronic applications such as transparent electrodes, thin film transistors, and optoelectronic devices. ZnO thin films have a wide band gap energy of 3.37 eV and transparency in visible region. Moreover, ZnO thin films can be deposited in a poly-crystalline form even at room temperature, extending the choice of substrates including even plastics. Therefore, it is possible to realize thin film transistors by using ZnO thin films as the active channel layer. In this work, we investigated influence of oxygen partial pressure on ZnO thin films and fabricated ZnO-based thin film transistors. ZnO thin films were deposited on glass substrates by using a pulsed laser deposition technique in various oxygen partial pressures from 20 to 100 mTorr at room temperature. X-ray diffraction (XRD), transmission line method (TLM), and UV-Vis spectroscopy were employed to study the structural, electrical, and optical properties of the ZnO thin films. As a result, 80 mTorr was optimal condition for active layer of thin film transistors, since the active layer of thin film transistors needs high resistivity to achieve low off-current and high on-off ratio. The fabricated ZnO-based thin film transistors operated in the enhancement mode with high field effect mobility and low threshold voltage.

  • PDF