• Title/Summary/Keyword: and AOR and DOR

Search Result 3, Processing Time 0.019 seconds

A Novel Scheme for Code Tracking Bias Mitigation in Band-Limited Global Navigation Satellite Systems (위성 기반 측위 시스템에서의 부호 추적편이 완화 기법)

  • Yoo, Seung-Soo;Kim, Sang-Hun;Yoon, Seok-Ho;Song, Iich-Ho;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1032-1041
    • /
    • 2007
  • The global navigation satellite system (GNSS), which is the core technique for the location based service, adopts the direct sequence/spread spectrum (DS/SS) as its modulation method. The success of a DS/SS system depends on the synchronization between the received and locally generated pseudo noise (PN) signals. As a step in the synchronization process, the tacking scheme performs fine adjustment to bring the phase difference between the two PN signals to zero. The most widely used tracking scheme is the delay locked loop with early minus late discriminator (EL-DLL). In the ideal case, the EL-DLL is the best estimator among various DLL. However, in the band-limited multipath environment, the EL-DLL has tracking bias. In this paper, the timing offset range of correlation function is divided into advanced offset range (AOR) and delayed offset range (DOR) centering around the correct synchronization time point. The tracking bias results from the following two reasons: symmetry distortion between correlation values in AOR and DOR, and mismatch between the time point corresponding to the maximum correlation value and the synchronization time point. The former and latter are named as the type I and type II tracking bias, respectively. In this paper, when the receiver has finite bandwidth in the presence of multipath signals, it is shown that the type II tracking bias becomes a more dominant error factor than the type I tracking bias, and the correlation values in AOR are not almost changed. Exploiting these characteristics, we propose a novel tracking bias mitigation scheme and demonstrate that the tracking accuracy of the proposed scheme is higher than that of the conventional scheme, both in the presence and absence of noise.

A Study on Scenario to establish Coastal Inundation Prediction Map due to Storm Surge (폭풍해일에 의한 해안침수예상도 작성 시나리오 연구)

  • Moon, Seung-Rok;Kang, Tae-Soon;Nam, Soo-Yong;Hwang, Joon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.492-501
    • /
    • 2007
  • Coastal disasters have become one of the most important issues in every coastal country. In Korea, coastal disasters such as storm surge, sea level rise and extreme weather have placed many coastal regions in danger of being exposed or damaged during subsequent storms and gradual shoreline retreat. A storm surge is an onshore gush of water associated with a tow pressure weather system, typically in typhoon season. However, it is very difficult to predict storm surge height and inundation due to the irregularity of the course and intensity of a typhoon. To provide a new scheme of typhoon damage prediction model, the scenario which changes the central pressure, the maximum wind radius, the track and the proceeding speed by corresponding previous typhoon database, was composed. The virtual typhoon scenario database was constructed with individual scenario simulation and evaluation, in which it extracted the result from the scenario database of information of the hereafter typhoon and information due to climate change. This virtual typhoon scenario database will apply damage prediction information about a typhoon. This study performed construction and analysis of the simulation system with the storm surge/coastal inundation model at Masan coastal areas, and applied method for predicting using the scenario of the storm surge.

A Tracking Scheme using Correlation Value at Advanced Offset Range in Galileo BOC(1,1) Signal (Galileo BOC(1,1)에서 이른 상관시간 옵셋 영역의 상관 값을 이용한 추적기법)

  • Yoo, Seung-Soo;Kim, Sang-Hun;Yoon, Seok-Ho;Song, Iick-Ho;Kim, Jun-Tae;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.86-93
    • /
    • 2008
  • The Galileo system, a global navigation satellite system(GNSS) developed by E.U., uses the direct sequence/spread spectrum(DS/SS) modulation. A DS/SS-based system performs a fine synchronization between the received and locally generated spreading signals, via attacking process. In the absence of multipath signals, using the symmetric characteristic of the correlation function, the delay lock loop with the early minus late discriminator(EL-DLL) offers the best performance in tracking. However, in the presence of multipath signals, the symmetry of the correlation function could be lost, causing a tracking bias. In this paper, we observe that the correlation values in the advanced offset range remain almost unchanged, due to the multipath signals being received later than a line-of-sight signal. Based on this observation, we propose a novel tracking scheme for a Galileo BOC(1,1) system.