• Title/Summary/Keyword: anchorage-independent cell

Search Result 20, Processing Time 0.025 seconds

Development of an Immobilized Adsorbent for In Situ Removal of Ammonium Ion from Animal Cell Culture Media and Its Applications to Animal Cell Culture System : II. Application to Cell Culture System (동물세포 배양액으로부터 암모늄 이온의 동시제거를 위한 고정화 흡착제의 개발과 동물세포 배양 시스템에의 응용 : II. 세포배양 시스템에의 응용)

  • 박병곤;이해익;전계택;김익환;정연호
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.411-417
    • /
    • 1998
  • The possibility of application of membrane type immobilized adsorbent to the fed-batch or perfusion culture system with anchorage-independent cells as well as batch system was investigated. The improvement in cell density and cell viability due to the combination of immobilized adsorbent with each culture system was evaluated for the investigation, and the optimum culture system employing immobilized adsorbent system was suggested based on the results. It was observed that the system with immobilized adsorbent showed better cell growth and cell viability than that without immobilized adsorbent in every operation system of batch, fed-batch, and perfusion. In case of batch system, 200% improvement of maximum cell density was observed in the system where ammonium chloride was added on purpose. And 50% improvement of maximum cell density was observed in the fed-batch system where ammonium ion accumulates significantly, while small increase in maximum cell density was observed in the perfusion system where dilution of waste byproducts exists. Especially, the fed-batch system showed the most significant improvement on cell growth because both compensation of nutrient and removal of ammonium ion occurred simultaneously in the system. Therefore a combined system of immobilized adsorbent and fed-batch operation could be suggested as an optimum system with in situ removal of ammonium ion.

  • PDF

COMPARATIVE GENE EXPRESSION PATTERNS DURING HUMAN BREAST CARCINOGENESIS USING IN VITRO MODEL

  • Kang, Kyung-Sun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.75-75
    • /
    • 2002
  • Two types of normal human breast epithelial cells (HBECs) have already been established and characterized. Type I HBECs are deficient in gap junctional intercellular communication and are capable of anchorage-independent growth and of expressing luminal epithelial cell markers, a variant estrogen receptor (ER), and stem cell characteristics.(omitted)

  • PDF

P42 Ebp1 functions as a tumor suppressor in non-small cell lung cancer

  • Ko, Hyo Rim;Nguyen, Truong L.X.;Kim, Chung Kwon;Park, Youngbin;Lee, Kyung-Hoon;Ahn, Jee-Yin
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.159-165
    • /
    • 2015
  • Although the short isoform of ErbB3-binding protein 1 (Ebp1), p42 has been considered to be a potent tumor suppressor in a number of human cancers, whether p42 suppresses tumorigenesis of lung cancer cells has never been clarified. In the current study we investigated the tumor suppressor role of p42 in non-small cell lung cancer cells. Our data suggest that the expression level of p42 is inversely correlated with the cancerous properties of NSCLC cells and that ectopic expression of p42 is sufficient to inhibit cell proliferation, anchorage-independent growth, and invasion as well as tumor growth in vivo. Interestingly, p42 suppresses Akt activation and overexpression of a constitutively active form of Akt restores the tumorigenic activity of A549 cells that is ablated by exogenous p42 expression. Thus, we propose that p42 Ebp1 functions as a potent tumor suppressor of NSCLC through interruption of Akt signaling.

Acetylshikonin Inhibits Human Pancreatic PANC-1 Cancer Cell Proliferation by Suppressing the NF-κB Activity

  • Cho, Seok-Cheol;Choi, Bu Young
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.428-433
    • /
    • 2015
  • Acetylshikonin, a natural naphthoquinone derivative compound, has been used for treatment of inflammation and cancer. In the present study, we have investigated whether acetylshikonin could regulate the NF-${\kappa}B$ signaling pathway, thereby leading to suppression of tumorigenesis. We observed that acetylshikonin significantly reduced proliferation of several cancer cell lines, including human pancreatic PANC-1 cancer cells. In addition, acetylshikonin inhibited phorbol 12-myristate 13-acetate (PMA) or tumor necrosis-${\alpha}$ (TNF-${\alpha}$)-induced NF-${\kappa}B$ reporter activity. Proteome cytokine array and real-time RT-PCR results illustrated that acetylshikonin inhibition of PMA-induced production of cytokines was mediated at the transcriptional level and it was associated with suppression of NF-${\kappa}B$ activity and matrix metalloprotenases. Finally, we observed that an exposure of acetylshikonin significantly inhibited the anchorage-independent growth of PANC-1 cells. Together, our results indicate that acetylshikonin could serve as a promising therapeutic agent for future treatment of pancreatic cancer.

Generation and analysis of whole-genome sequencing data in human mammary epithelial cells

  • Jong-Lyul Park;Jae-Yoon Kim;Seon-Young Kim;Yong Sun Lee
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.11.1-11.5
    • /
    • 2023
  • Breast cancer is the most common cancer worldwide, and advanced breast cancer with metastases is incurable mainly with currently available therapies. Therefore, it is essential to understand molecular characteristics during the progression of breast carcinogenesis. Here, we report a dataset of whole genomes from the human mammary epithelial cell system derived from a reduction mammoplasty specimen. This system comprises pre-stasis 184D cells, considered normal, and seven cell lines along cancer progression series that are immortalized or additionally acquired anchorage-independent growth. Our analysis of the whole-genome sequencing (WGS) data indicates that those seven cancer progression series cells have somatic mutations whose number ranges from 8,393 to 39,564 (with an average of 30,591) compared to 184D cells. These WGS data and our mutation analysis will provide helpful information to identify driver mutations and elucidate molecular mechanisms for breast carcinogenesis.

Human selenium binding protein-1 (hSP56) is a negative regulator of HIF-1α and suppresses the malignant characteristics of prostate cancer cells

  • Jeong, Jee-Yeong;Zhou, Jin-Rong;Gao, Chong;Feldman, Laurie;Sytkowski, Arthur J.
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.411-416
    • /
    • 2014
  • In the present study, we demonstrate that ectopic expression of 56-kDa human selenium binding protein-1 (hSP56) in PC-3 cells that do not normally express hSP56 results in a marked inhibition of cell growth in vitro and in vivo. Down-regulation of hSP56 in LNCaP cells that normally express hSP56 results in enhanced anchorage-independent growth. PC-3 cells expressing hSP56 exhibit a significant reduction of hypoxia inducible protein (HIF)-$1{\alpha}$ protein levels under hypoxic conditions without altering HIF-$1{\alpha}$ mRNA (HIF1A) levels. Taken together, our findings strongly suggest that hSP56 plays a critical role in prostate cells by mechanisms including negative regulation of HIF-$1{\alpha}$, thus identifying hSP56 as a candidate anti-oncogene product.

OCT4B Isoform Promotes Anchorage-Independent Growth of Glioblastoma Cells

  • Choi, Sang-Hun;Kim, Jun-Kyum;Jeon, Hee-Young;Eun, Kiyoung;Kim, Hyunggee
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.135-142
    • /
    • 2019
  • OCT4, also known as POU5F1 (POU domain class 5 transcription factor 1), is a transcription factor that acts as a master regulator of pluripotency in embryonic stem cells and is one of the reprogramming factors required for generating induced pluripotent stem cells. The human OCT4 encodes three isoforms, OCT4A, OCT4B, and OCT4B1, which are generated by alternative splicing. Currently, the functions and expression patterns of OCT4B remain largely unknown in malignancies, especially in human glioblastomas. Here, we demonstrated the function of OCT4B in human glioblastomas. Among the isoform of OCT4B, OCT4B-190 ($OCT4B^{19kDa}$) was highly expressed in human glioblastoma stem cells and glioblastoma cells and was mainly detected in the cytoplasm rather than the nucleus. Overexpression of $OCT4B^{19kDa}$ promoted colony formation of glioblastoma cells when grown in soft agar culture conditions. Clinical data analysis revealed that patients with gliomas that expressed OCT4B at high levels had a poorer prognosis than patients with gliomas that expressed OCT4B at low levels. Thus, $OCT4B^{19kDa}$ may play a crucial role in regulating cancer cell survival and adaption in a rigid environment.

Investigation of Carcinogenic Potential of TCDD in the Human Breast Epithelial Cell line (사람의 유방상피세포에서 TCDD에 의한 발암성 연구)

  • 김정환;나혜경;서영준
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.312-318
    • /
    • 2002
  • Dioxin represents a group of halogenated aromatic hydrocarbons of which 2,3,7,8-tetrachlorod-ibenzo-p-dioxin (TCDD) is well known for its extremely toxic properties as well as ubiquitous presence in our environment and ecosystems. In order to better assess the carcinogenic mechanism of dioxin, we should utilize the reliable biomarkers that can precisely and correctly reflect multi-stage carcinogenesis. When MCF10A cells were exposed to TCDD (10 nM), expression of both CYP1A1 and CYP1B1 was induced in a time-related manner. The expression as well as activity of ornithine decarboxylase was transiently induced by TCDD treatment. In contrast, the induction of COX-2 that is implicated in carcinogenesis as well as inflammation, was not induced by TCDD. In another study, gap-junctional intercellular communication (GJIC) was attenuated by TCDD treatment as revealed by the dye-transfer assay. Based on these findings, TCDD has both tumor initiating and promoting potential in human breast epithelial cells in culture. Also, treatment of MCF10A cells with the carcinogen 7,12-dimethylbenz[a]anthracene plus TCDD resulted in malignant cell transformation as revealed by increased anchorage-independent growth of exposed cells. Additional studies may be necessary to assess the effects of TCDD on multi-stage carcinogenesis in vivo.

  • PDF

Antiproliferative effect of gold(I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells

  • Kim, Nam-Hoon;Park, Hyo Jung;Oh, Mi-Kyung;Kim, In-Sook
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.59-64
    • /
    • 2013
  • Signal transducer and activator of transcription 3 (STAT3) and telomerase are considered attractive targets for anticancer therapy. The in vitro anticancer activity of the gold(I) compound auranofin was investigated using MDA-MB 231 human breast cancer cells, in which STAT3 is constitutively active. In cell culture, auranofin inhibited growth in a dose-dependent manner, and N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS), markedly blocked the effect of auranofin. Incorporation of 5-bromo-2'-deoxyuridine into DNA and anchorage-independent cell growth on soft agar were decreased by auranofin treatment. STAT3 phosphorylation and telomerase activity were also attenuated in cells exposed to auranofin, but NAC pretreatment restored STAT3 phosphorylation and telomerase activity in these cells. These findings indicate that auranofin exerts in vitro antitumor effects in MDA-MB 231 cells and its activity involves inhibition of STAT3 and telomerase. Thus, auranofin shows potential as a novel anticancer drug that targets STAT3 and telomerase.

MiR-454 Prompts Cell Proliferation of Human Colorectal Cancer Cells by Repressing CYLD Expression

  • Liang, Hong-Liang;Hu, Ai-Ping;Li, Sen-Lin;Xie, Jia-Ping;Ma, Qing-Zhu;Liu, Ji-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2397-2402
    • /
    • 2015
  • Previous studies have shown that miR-454 plays an important role in a variety of biological processes in various human cancer cells. However, the underlying mechanisms of this microRNA in colorectal cancer (CRC) cells remain largely unknown. In the present study, we investigated the miR-454 role in CRC cell proliferation. We found that miR-454 expression is markedly upregulated in CRC tissues and CRC cells compared with the matched tumor adjacent tissues and the FHC normal colonic cell line. Ectopic expression of miR-454 promoted the proliferation and anchorage-independent growth of CRC cells, whereas inhibition of miR-454 reduced this effect. Bioinformatics analysis further revealed cylindromatosis (CYLD), a putative tumor suppressor as a potential target of miR-454. Data from luciferase reporter assays showed that miR-454 directly binds to the 3'-untranslated region (3'-UTR) of CYLD mRNA and repressed expression at both transcriptional and translational levels. In functional assays, CYLD-silenced in miR-454-in-transfected SW480 cells have positive effect to promote cell proliferation, suggesting that direct CYLD downregulation is required for miR-454-induced CRC cell proliferation. In sum, our data provide compelling evidence that miR-454 functions as an onco-miRNA, playing a crucial role in the promoting cell proliferation in CRC, and its oncogenic effect is mediated chiefly through direct suppression of CYLD expression.