• Title/Summary/Keyword: anchorage, anchorage length

Search Result 136, Processing Time 0.03 seconds

Seismic Behavior of Nonseismically Detailed Reinforced Concrete Beam-Column Joints (비내진 상세를 가진 RC 보-기둥 접합부의 지진 거동)

  • Woo, Sung-Woo;Lee, Han-Seon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.894-901
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. Interior and exterior beam-column subassemblages were selected from a ten-story RC building and six 1/3-scale specimens were constructed with three variables; (1) with and without slab, (2) with and without hoop bars in the joint region, (3) upward and downward direction of anchorage for the bottom bar in beams of exterior beam-column subassemblage. The test results have shown; (1) in case of interior beam-column subassemblage, there is no almost difference between nonseismic and seismic details in the strength and ductility capacity; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) in the exterior joint caused the 10%∼20% reduction of strength and 27% reduction of ductility in comparison with the case of seismic details; and the existence of hoop bars in the joint region shows no effect in shear strain.

Reversed Cyclic Loading Tests on Precast Beam-Column Joints with Headed Reinforcement (프리캐스트 보-기둥 헤드철근 연결부 반복하중 실험)

  • Kim, In-Gyu;Yu, Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.369-376
    • /
    • 2003
  • One of the most complex reinforcement location in the precast building frame is the beam-column joint in a prefabricated construction. It is generally resulted from the vortical bars of column, anchorage bars of beam, and bars of hoop. Particularly the hooked anchorage bars of beam are confronted with hoop and main column bars. The headed reinforcement is considered to place them easily and to reduce the anchorage length in a precast construction. Reversed cyclic loading tests are performed on four beam-column specimens to evaluate the strength and behavior of beam to column and column to column connections. The result of test shows that the headed reinforcement has a similar performance than that of hooked reinforcement in a precast specimen with strong column and weak beam joints. The splice column joints which are used frequently in the domestic fields also show reliable behaviors in those tests with strong column and weak beam joints.

Moss on the Matanuska Glacier, Alaska

  • Kim, Ki-Tai
    • Journal of Ecology and Environment
    • /
    • v.29 no.2
    • /
    • pp.171-173
    • /
    • 2006
  • A species of moss (Musci) is observed on the Matanuska Glacier of Alaska in the middle of summer. The life cycle of the moss is perfectly observed. This is very rare and special because the environment is completely glacial and barren of plants. Matanuska is a gigantic glacier formed about 18,000 years ago in the Palmer region near Anchorage. It has a dimension of 27 miles in length and 4 miles in width. The glacier is located in the region between Anchorage and Mount McKinley. This huge glacier carved the Matanuska valley thousands of years ago. The mighty glacier also forms the Matanuska River. The summer weather is very changeable throughout the day: warm, cold, sunshiny, windy, cloudy, rainy, snowy, foggy, etc. The Arctic clouds move very quickly and create variable climates. So there are four seasons even in one day during the summer period of this region.

Basic Research for the Development of Collision Risk Model of Passing Vessels at an Anchorage (Safety Domain) (정박지 통항선박의 충돌위험 모델 개발을 위한 기초연구 - 정박지 통항선박의 안전 -)

  • Lee, Jin-Suk;Kwon, Yumin;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • The purpose of this study is to obtain a safe area for a passing vessel between anchored vessels by developing a model to predict the collision risk, frequent collisions occur between the anchored vessel and the passing vessel through the anchorage. For this, this study selected the southern anchorage of Busan port, which is the largest harbor in Korea, as the target area and extracted and analyzed VTS (Vessel Traffic Service) data during the period in which anchored vessels were the most waited. The ratio of D/L for each bearing was obtained to determine the safe distance (D) passes based on the length (L) of the passing vessel between anchored vessels. Based on the average domain of the D/L ratio distribution, the percentage of anchored vessels within the scope of the pre-studied ship's domain was analyzed to obtain a domain reflecting the degree of risk of VTSOs. Further research will evaluate and analyze the collision risk of a passing vessel using Domain-watch, the minimum safe distance between anchored vessels, and the safe domain of a passing vessel through anchorage, to develop a model for VTS to manage anchorages more efficiently and safely.

Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces (최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가)

  • 유승룡;김대훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.

Strain penetration of high-strength steel bars anchored in reinforced concrete beam-column connections

  • Li, Ling;Zheng, Wenzhong;Wang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.367-382
    • /
    • 2019
  • This paper presents experimental and analytical investigations on additional fixed-end rotations resulting from the strain penetration of high-strength reinforcement in reinforced concrete (RC) beam-column connections under monotonic loading. The experimental part included the test of 18 interior beam-column connections with straight long steel bars and 24 exterior beam-column connections with hooked and headed steel bars. Rebar strains along the anchorage length were recorded at the yielding and ultimate states. Furthermore, a numerical program was developed to study the effect of strain penetration in beam-column connections. The numerical results showed good agreement with the test results. Finally, 87 simulated specimens were designed with various parameters based on the test specimens. The effect of concrete compressive strength ($f_c$), yield strength ($f_y$), diameter ($d_b$), and anchorage length ($l_{ah}$) of the reinforcement in the beam-column connection was examined through a parametric study. The results indicated that additional fixed-end rotations increased with a decrease in $f_c$ and an increase in $f_y$, $d_b$ and $l_{ah}$. Moreover, the growth rate of additional fixed-end rotations at the yielding state was faster than that at the ultimate state when high-strength steel bars were used.

EFFECTS OF BONE ENGAGEMENT TYPE&IMPLANT LENGTH ON STRESS DISTRIBUTION: A THREE DIMENSIONAL FINITE ELEMENT ANALYSIS (임플란트 매식조건에 따른 상, 하악골의 응력분포 양상에 대한 3차원 유한요소분석 연구)

  • Choi, Jeong-Hwa;Seo, Ki-Youl;Choi, Joo-Ho;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.687-697
    • /
    • 1999
  • A finite element analysis has been utilized to analyze stress and strain fields and design a new configuration in orthopedics and implant dentistry. Load transfer and stress analysis at implant bone interface are important factors from treatment planning to long term success. Bone configuration and quality are different according te anatomy of expecting implantation site. The purpose of this study was to compare the stress distribution in maxilla and mandible accord-ing to implant length and bone engagement types. A three dimensional axi-symmetric implant model(Nobel Biocare, Gothenburg, Sweden) with surrounding cortical and cancellous bone were designed to analyze the effects of bone engagement and implant length on stress distribution. ANSYS 5.5 finite element program was utilized as an interpreting toot. Three cases of unicortical anchorage model with 7, 10, 13 mm length and four cases of bicortical anchorage model with 5, 7, 10 and 13 mm length were compared both maxillary and mandibular single implant situation. Within the limits of study, following conclusions were drawn. 1. There is a difference in stress distribution according to cortical and cancellous bone thickness and shape. 2. Maximum stress was shown at the top of cortical bone area regardless of bone engagement types. 3. Bicortical engagement showed less stress accumulation when compared to unicortical case overall. 4. Longer the implant future length, less the stress on cortical bone area, however there is no difference in mandibular bicortical engagement case.

  • PDF

Development of Positive Moment Reinforcement (정모멘트 철근의 정착)

  • 홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.421-426
    • /
    • 1998
  • Current code provisions for the development of positive moment reinforcement is reviewed and criticized in this paper. Both the flexural bond and development length concepts are neccesary to consider anchorage requirement of reinforcement at beam ends. The curent design codes show unconservatism for the detailing of reinforcement at the beam ends. This study proposes a new design formula for the development of positive moment reinforcement.

  • PDF

An Experimental Study on Bonding Capacity by Concrete Strength and Type of Re-bar Anchor (콘크리트 강도별 매입 철근의 유형별 부착력 측정실험)

  • Cho, Seong-Yeol;Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Many construction equipment or supporting structure should be installed in a field without appropriate anchorage to cause a collapse of those. Anchor length, anchor diameter, hooked or non hooked will be made and tested in the study. This one will be analyzed and compared with the previous study in order to find out some difference, strength by strength, based on this study. Embedded re-bar and the resistant capacity against pulled out force of re bar have been tested and analyzed by concrete design strength and rebar diameter in the study. 21Mpa and 24MPa compressive strength which are used in construction practice have been applied as variables. Those rebars are composed of D13, D16. D22 which are mostly used at construction sites. The followings are summarized as conclusions.1) ductility is not increased as rebar diameter becomes larger under the condition of non-hooked anchorage.2) those are two times of displacement difference between small diameter of rebar and large one with hooked anchorage of rebar while being 1/10 times difference with non-hooked condition but, only 10% difference of maximum load are shown, not conspicuously between hooked and non-hooked condition.3) displacement related to ductility can be three(3) times decreased if only concrete compressive strength and rebar diameter become larger with heavy support weight.

A Study of the Anchorage loss of Ground Anchor Using Spacing Apparatus and Spring for Soil Structure Stability (토구조물의 안정성 확보를 위한 정착력 손실 최소화 간격유지장치 어스앵커에 관한 연구)

  • Jeong, Sang-Min;Lee, Seong-Won;Yoo, Ji-Hyeung;Lee, Keun-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.2 s.21
    • /
    • pp.17-24
    • /
    • 2006
  • A ground anchor system is used as a load carrying element for soil structure stability The conventional systems with ground anchors bring about the anchorage loss of wedges when anchors are installed for the support of soil structures. Hence we developed the new type of anchor system using both the spacing apparatus and spring (length 60mm, diameter 6mm). In this system, we can directly check the condition of wedges and PS strands and modify the problems with the slip and anchorage of wedges under construction. For demonstrating the superiority of this system, we carried out a series of both laboratory and field test. Consequently, we can obtain satisfactory result (18.99% reduction to the loss of conventional systems). Moreover, the replacement of wedges is easy and simple when retensioning of strands.