• Title/Summary/Keyword: anchorage, anchorage length

Search Result 137, Processing Time 0.024 seconds

Research on reinforcement mechanism of soft coal pillar anchor cable

  • Li, Ang;Ji, Bingnan;Zhou, Haifeng;Wang, Feng;Liu, Yingjie;Mu, Pengfei;Yang, Jian;Xu, Ganggang;Zhao, Chunhu
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.697-706
    • /
    • 2022
  • In order to explore the stable anchoring conditions of coal side under the mining disturbance of soft section coal pillar in Wangcun Coal Mine of Chenghe Mining Area, the distribution model of the anchoring support pressure at the coal pillar side was established, using the strain-softening characteristics of the coal to study the distribution law of anchoring coal side support pressure. The analytical solution for the reinforcement anchorage stress in the coal pillar side was derived with the inelastic state mechanical model. The results show that the deformation angle of the roadway side and roof increases with the roof subsidence due to the mining influence at the adjacent working face, the plastic deformation zone extends to the depth of the coal side, and the increase of anchorage stress can effectively control the roof subsidence and further deterioration of plastic zone. The roadway height and the peak support pressure have a certain influence on the anchorage stress, the required anchorage stress of the coal side rises with the roadway height and the peak support pressure. The required anchorage stress of the coal pillar side decreases as the cohesion between the coal seam and the roof and floor and the anchor length increases. Then, applied the research result to Wangcun coal mine in Chenghe mining area, the design of anchor cable reinforcement support was proposed for the section of coal pillars side that has been anchored and deformed, which achieved great results and effectively controlled the convergence and deformation of the side, providing a safety guarantee for the roadway excavation and mining.

Clip-type Binding Implement Effect on Anchorage Behavior of 90-Degree End-Hooked Transverse Reinforcement in Reinforced Concrete Columns (클립형 연결장치로 결속된 90도 갈고리를 갖는 띠철근의 정착거동)

  • Park, Kyoung-Yeon;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.72-80
    • /
    • 2020
  • The purpose of this study is to secure the same or more structural performance and constructability for the details of hooks cross-constructed at 135 degrees used as external-ties standard detail in RC columns, therefore, to the purpose of improving constructability, the clip-type binding implement was suggested and A total of 28 pull-out specimens were prepared with the parameters of concrete compressive strength and clip-embeded length, clip installation location to examine the anchorage behavior of the clip-type binding implement. The experiment was carried out. The results of the experiment confirmed that the anchorage strength of the clip-type binding implement was higher than the details of hooks cross-constructed at 135-degree regardless of the diameter of tie and concrete strength, embeded clip length, clip installation. and The 90-degree end hook with clip-type binding implement was showed a similar an anchorage behavior of 135-degree end-hooked transverse reinforcement, consequently, The 90-degree end hooked with clip-type binding implement is evaluated to be the same anchorage behavior and performance as standard 135-degree end hook detail.

Anchorage Strength of High Strength Headed Bar Embedded Vertically on SFRC Members (SFRC 부재에 수직 배근된 고강도 확대머리철근의 정착강도)

  • Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.148-156
    • /
    • 2020
  • The paper is a summary of the results of the basic pullout test which is conducted to evaluate the anchorage capacity of high strength headed bars that is mechanical anchored vertically on steel fiber reinforced concrete members. The main experimental parameters are volume fraction of steel fiber, concrete strength, anchorage length, yield strength of headed bars, and shear reinforcement bar. Both sides of covering depth of the specimen are planned to double the diameter of the headed bars. The hinged point is placed at the position of each 1.5𝑙dt and 0.7𝑙dt around the headed bars, and the headed bars are drawn directly. As a result of pullout test experiment, concrete fracture and steel tensile rupture appear by experimental parameters. The compressive strength of concrete is 2.7~5.4% higher than that of steel fiber with the same parameters, while the pullout strength is 20.9~63.1% higher than that of steel fiber without the same parameters, which is evaluated to contribute greatly to the improvement of the anchorage capacity. The reinforcements of shear reinforcements parallel to the headed bars increased 1.7~7.7% pullout strength for steel fiber reinforced concrete, but the effect on the improvement of the anchorage capacity was not significant considering the increase in concrete strength. As with the details of this experiment, it is believed that the design formula for the anchorage length of KCI2017and KCI2012 are suitable for the mechanical development design of SD600 head bar that is perpendicular to the steel fiber reinforced concrete members.

The Efficient Anchorage Management of VTS through Analysis of Domain Watch (영역감시 분석을 통한 VTS의 효율적 정박지 관리 방안에 관한 연구)

  • Lee, Jin-Suk;Song, Chae-Uk
    • Journal of Navigation and Port Research
    • /
    • v.42 no.3
    • /
    • pp.201-206
    • /
    • 2018
  • The purpose of this study is to estimate a proper Domain Watch between anchored vessels in order to propose a method for the efficient management of VTS(Vessel Traffic Service) of the N-anchorage in Busan harbor, which is the largest port in Korea. For this purpose, we proposed the calculation method of Domain Watch and investigated the ship length(L), the distance between anchored vessels ($D_{ij}$), the domain radius(R), and the domain radius vs L(R/L) during the peak time of the vessels in the latest usage of anchorage. As a result of technical analysis for the surveyed data, the minimum R/L for securing the safety distance between anchored vessels was selected based on 2.85 corresponding to the 70th percentile of the total data. This result was applied to the N-anchorage of Busan and compared with the 'Guidelines of Port and Harbor Design(2014)', and we have confirmed that it is reasonable to set the Domain radius with the minimum 2.85L or more in VTS. This study considers the safety management of anchorage for VTS. This study could contribute to the safety of vessels using anchorage and the safety management plan of VTS when it is applied to other ports in operation such as it was in Busan.

Plate Separation (에폭시 접착강판으로 보강된 철근콘크리트 보의 강판단부의 거동특성)

  • 신영수;최완철;홍기섭;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.374-379
    • /
    • 1994
  • This paper deals with the problem of plate separation and anchorage at the ends of steel plates strengthened by EBSP. Test results show that the reinforced concrete beams strengthened by EBSP occurs the premature failure without the beams achieving their full flexural strength at the end of plates. The premature failure is the cause of stress concentrations in the adhesive layer of plate, reinforced concrete incase of lack of plate length. Then a simple, approximate procedure for predicting the shear and normal stress concentrations is investigated by Robert's the ory based on partial interaction theory. The theoretical results are compared, and show close agreement with test results. A method is derived for determining the plate length that prevents the premature anchorage zone failure

  • PDF

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

The Suggestion of Testing Method for Analysis of Tensile Strength of Multi-Directional GFRP Plate (다방향 GFRP 플레이트의 인장강도 분석을 위한 시험 방법 제안에 관한 연구)

  • Sim, Jong-Sung;Kwon, Hyuck-Woo;Lee, Hyoung-Ho;Kim, Hyun-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.799-808
    • /
    • 2011
  • In this study, a standardized test method to analyze tensile properties of multi-directional GFRP plate was proposed. Presently, tensile strength test of FRP composite reinforced with isotropic and orthotropic fiber is standardized according to ISO standard. Also, even though many studies were performed on test method to analyze the dynamic properties, the properties of tensile strength for multi-directional GFRP plate were not clearly identified. Currently, the domestic test method in accordance with ASTM, which is applicable to unidirectional FRP plate, gave tensile test results greater than actual properties. Thus, in this study, GFRP tensile test was conducted using the method found to be commonly applicable to all standards based on literature review of domestic and international references. Then, anchorage length experiments were performed using the proposed tension test method to evaluate validity of the method. Finally, optimal anchorage length was estimated from the numerical analysis to propose the standardized tensile strength method for GFRP multi-directional composite evaluation.

Experimental and numerical study on mechanical behaviour of grouted splices with light-weight sleeves

  • Quanwei Liu;Tao Wu;Zhengyi Kong;Xi Liu;Ran Chen;Kangxiang Hu;Tengfei Xiang;Yingkang Zhou
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.165-182
    • /
    • 2024
  • Grouted sleeve splice (GSS) is an effective type of connection applied in the precast concrete structures as it has the advantages of rapidly assembly and reliable strength. To decrease the weight and cost of vertical rebar connection in precast shear walls, a light-weight sleeve is designed according to the thick-cylinder theory. Mechanical behaviour of the light-weighted GSS is investigated through experimental analysis. Two failure modes, such as rebar fracture failure and rebar pull-out failure, are found. The load-displacement curves exhibit four different stages: elastic stage, yield stage, strengthening stage, and necking stage. The bond strength between the rebar and the grout increases gradually from outer position to inner position of the sleeve, and it reaches the maximum value at the centre of the anchorage length. A finite element model predicting the mechanical properties of the light-weighted GSS is developed based on the Concrete Damage Plasticity (CDP) model and the Brittle Cracking (BC) model. The effect of the rebar anchorage length is significant, while the increase of the thickness of sleeve and the grout strength are not very effective. A model for estimating ultimate load, including factors of inner diameter of sleeves, anchorage length, and rebar diameter, is proposed. The proposed model shows good agreement with various test data.

Design Considerations and Pull-Out Behavior of Mechanical Anchor of Reinforcement (철근 기계적 정착장치의 설계 고려사항과 인발특성)

  • 천성철;김대영
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.593-601
    • /
    • 2001
  • In RC structure, sufficient anchorage of reinforcement is necessary for the member to produce the full strength. Generally, conventional standard hook is used for the reinforcement's anchorage. However, the use of standard hook results in steel congestion, making fabrication and construction difficult. Mechanical anchor offers a potential solution to these problems and may also ease fabrication, construction and concrete placement. In this paper, the required characteristics and the design considerations of mechanical anchor were studied. Also, the mechanical anchor was designed according to the requirements. To investigate the pull-out behavior and properness of mechanical anchorage, pull-out tests were performed. The parameters of tests were embedment length, diameter of reinforcement, concrete compressive strength, and spacing of reinforcements. The strengths of mechanical anchor were consistent with the predictions by CCD method. The slip between mechanical anchor and concrete could be controlled under 0.2mm. Therefore, the mechanical anchor with adequate embedment could be used for reinforcement's anchorage. However, it was observed that the strength of mechanical anchors with short spacing of reinforcements was greatly reduced. To apply the mechanical anchor in practice (e.g. anchorage of the beams reinforcements in beam-column joint), other effects that affect the mechanical anchor mechanism, such as confinement effect of adjacent member from frame action or effects of shear reinforcement, should be considered.

Evaluation of Bursting Behavior in Anchorage Zone of PSC I Girders (PSC I 거더의 정착부 파열거동 평가)

  • Choi, Kyu Chon;Park, Young Ha;Paik, In Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.329-336
    • /
    • 2010
  • An experimental study to evaluate bursting behavior in anchorage zone of the standard PSC I girders (span length : 30 m) has been carried out. The arrangement of bursting reinforcement in anchorage zone of the standard PSC I girders is considered to be designed without accurately reflecting the stress flows in the end zone of the PSC I girders caused by presstressing forces of the tendons. Also, due to excessive arrangement of the bursting bars, the workability of the girder is decreased greatly. In this study, three specimens with the same dimensions as the end zone of the standard PSC I girder are prepared and the experiment is carried out by applying PS forces. The bursting reinforcement of each specimen consists of 100 mm, 200 mm, and 300mm spacings, respectively. The experimental results show that the range of the PS forces to cause crack in the anchorage zone of the specimen are more than 1.6 times of the design PS forces. The bursting cracks occur in the vertical direction on the inside of all specimens. After applying 2.7 times of the design PS force, some of the transverse bursting reinforcements only in the specimen reinforced by 300 mm spacing yielded. The experimental results show that the anchorage zone of the standard PSC I girders arranged by 300 mm spacing of the bursting reinforcements which is the maximum spacing allowed in the road bridge design specifications, can be considered safe enough.