• 제목/요약/키워드: anchor force

검색결과 212건 처리시간 0.026초

Development of umbrella anchor approach in terms of the requirements of field application

  • Evirgen, Burak;Tuncan, Ahmet;Tuncan, Mustafa
    • Geomechanics and Engineering
    • /
    • 제18권3호
    • /
    • pp.277-289
    • /
    • 2019
  • In this study, an innovative anchoring approach has been developed dealing with all relevant aspects in consideration of previous works. An ultimate pulling force calculation of anchor is presented from a geotechnical point of view. The proposed umbrella anchor focuses not only on the friction resistance capacity, but also on the axial capacity of the composite end structure and the friction capacity occurring around the wedge. Even though the theoretical background is proposed, in-situ application requires high-level mechanical design. Hence, the required parts have been carefully improved and are composed of anchor body, anchor cap, connection brackets, cutter vanes, open-close ring, support elements and grouting system. Besides, stretcher element made of aramid fabric, interior grouting system, guide tube and cable-locking apparatus are the unique parts of this design. The production and placement steps of real sized anchors are explained in detail. Experimental results of 52 pullout tests on the weak dry soils and 12 in-situ tests inside natural soil indicate that the proposed approach is conservative and its peak pullout value is directly limited by a maximum strength of anchored soil layer if other failure possibilities are eliminated. Umbrella anchor is an alternative to conventional anchor applications used in all types of soils. It not only provides time and workmanship benefits, but also a high level of economic gain and safe design.

해상풍력단지 내 공존어업설비 호미닻 성능 검증 실험 및 수치 해석 연구 (Drag Anchor Performance Experiment and Numerical Analysis for Coexistence Fishery Facility in Offshore Wind Farm)

  • 옥수열;김규원;김찬주;원종하;이호엽;경두현
    • 풍력에너지저널
    • /
    • 제14권1호
    • /
    • pp.21-28
    • /
    • 2023
  • This paper investigates the resistance performance of drag anchors used for aqua farms installed in southwestern offshore wind farms in Korea. These anchors have been employed for a long time without any quantitative evaluation. Experimental campaigns were performed at the target site and the results were used to validate the numerical model by changing the penetration depths in the uniformly distributed seabed (i.e., flat). Based on the validated model with good agreement with the experiments (ARE 1.8 %), the resistance of the anchor with different pullout angles was thoroughly examined. It is worth noting that the Coupled Eulerian-Lagrangian (CEL) technique was applied to account for the large deformation of the anchor; Eulerian for the seabed and Lagrangian for the structure. The numerical results indicated that the pullout resistance is vulnerable to horizontal inclined force rather than vertical inclination, implying that the optimum performance is ideally expected to be 0-degree force applied.

NATE터널의 갱문 가시설 배후 균열에 따른 조치 및 보강사례

  • 길호언;김진흥;유재성;차복남
    • 기술발표회
    • /
    • 통권2006호
    • /
    • pp.342-355
    • /
    • 2006
  • The Tunnel portal is designed on temporary support system which is composed by 28m height H-Pile method and Ground Anchor method. The tunnel has excavated about 30m from the portal, but some deformation is found on the surface ground just above the tunnel face. It was investigated very carefully to find out the causes of deformation. By the observation and study, two main causes of deformation are found out. The one is earth pressure increase compared with classical earth pressure theory. That was due to the direction of ground rock mass's discontinuities. It causes the increase of earth pressure that are activated by the direction of discontinuity. The other one is that present design method neglect the transferred force by removal of temporary support members and ground anchor within the tunnel contour line as the tunnel excavation proceeds As the result of removals of the member and anchor, some force transferred from removed systems to remaining supporting systems. In designing the portal support systems, lt must be considered the discontiunity of ground mass and the transfered force due to excation.

  • PDF

An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems

  • Min, Jiyoung;Yun, Chung-Bang;Hong, Jung-Wuk
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.107-122
    • /
    • 2016
  • We propose an effective methodology using electromechanical impedance characteristics for estimating the remaining tensile force of tendons and simultaneously detecting damages of the anchorage blocks. Once one piezoelectric patch is attached on the anchor head and the other is bonded on the bearing plate, impedance responses are measured through these two patches under varying tensile force conditions. Then statistical indices are calculated from the impedances, and two types of relationship curves between the tensile force and the statistical index (TE Curve) and between statistical indices of two patches (SR Curve) are established. Those are considered as database for monitoring both the tendon and the anchorage system. If damage exists on the bearing plate, the statistical index of patch on the bearing plate would be out of bounds of the SR curve and damage can be detected. A change in the statistical index by damage is calibrated with the SR curve, and the tensile force can be estimated with the corrected index and the TE Curve. For validation of the developed methodology, experimental studies are performed on the scaled model of an anchorage system that is simplified only with 3 solid wedges, a 3-hole anchor head, and a bearing plate. Then, the methodology is applied to a real scale anchorage system that has 19 strands, wedges, an anchor head, a bearing plate, and a steel duct. It is observed that the proposed scheme gives quite accurate estimation of the remaining tensile forces. Therefore, this methodology has great potential for practical use to evaluate the remaining tensile forces and damage status in the post-tensioned structural members.

비탈면에 적용된 다구근 앵커의 보강효과 연구 (A Study On The Reinforcing Effect Multibell Anchor Applied To The Cut Slope)

  • 차경섭;김선주;김태훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1286-1293
    • /
    • 2010
  • The ground anchor used in domestic area, which resists by adhesion between anchor body and the ground to the external force, seems not to be adequate for soft ground and urban area where the boundary between structures is close because the ground is disturbed and lost its strength during boring. In order to overcome such a shortcoming an expanded anchor system has been developed. The ground expansion is accomplished by means of Pulse Discharge Technology. In this technology, a high voltage of electricity is stored and discharged in milliseconds which induces high pressure acting on the ground. By making a couple of bulbs, a passive resistance as well as shaft resistance are mobilized, and therefore a higher pullout resistance comparing existing ground anchors is developed.In this study, a couple of full scale tests were conducted in order to figure out how much the resistance of an expanded anchor increases comparing to the straight. As a result, it was found that a remarkable increase in ultimate pullout capacity is observed for the soft ground and as the number of bulb increases. In addtion, as a result of applying to a cut slope reinforcement, it appeared that the length of fixed zone of anchor can be reduced effectively.

  • PDF

아스팔트콘크리트 궤도용 궤도변위 저항 장치 개발 (Development of Device to Resist Horizontal Displacement of Asphalt Concrete Track)

  • 이성혁;윤우용;배영훈
    • 한국철도학회논문집
    • /
    • 제19권6호
    • /
    • pp.744-754
    • /
    • 2016
  • 아스팔트콘크리트 궤도는 아스팔트콘크리트 도상 위에 광폭침목 및 콘크리트 패널이 직결되는 궤도 형식으로서 각종 종 횡방향 외력에 대한 저항력이 요구된다. 따라서 본 논문에서는 광폭침목형 및 콘크리트 패널형 아스팔트콘크리트 궤도에 대해 종 횡방향 저항력 실험을 수행하고 궤도변위 저항 장치에 요구되는 필요 전단 저항력을 산정하였다. 또한 궤도변위 저항 장치로서 콘크리트 블록형 앵커 및 강관형 앵커를 개발하고 각각의 앵커 실험체에 대한 수평전단 실험을 수행하여 앵커 종류별 전단 저항력을 도출하였다. 그리고 아스팔트콘크리트 궤도에 궤도변위 저항 장치 적용 시, 전단 저항 성능 및 경제성 등을 고려하여 궤도변위 저항 장치 적정 개수 및 배치 설계(안)을 제시하였다.

모래지반내의 연직 지반앵커 표면의 마찰각 (Friction Angle on the Surface of Vertical Ground Anchor in Sand)

  • 임종철
    • 한국지반공학회지:지반
    • /
    • 제11권4호
    • /
    • pp.99-110
    • /
    • 1995
  • 본 연구에서는 정규압밀 건조 모래 지반내의 연직 강체 지반앵커에 대한 모형 인발실험을 실시해서 앵커 표면의 마찰각을 실측했다. 마찰각은 앵커 표면의 깊이 방향으로 설치된 다수의 2 방향 로드셀을 사용해서 측정된 수직응력, 전단응력으로 구했다. 실험은 평면변형률 앵커와 축대칭 앵커에 대해서 실시했는데 실험 분석 결과, 앵커표면의 최대마찰각은 평면변형률 압축시험에 의한 무신축방향의 면상의 응력경각의 최대치와 거의 일치한다는 것을 알았다. 이 결론은 모래의 강도 이방성과 구속압 의존성 등을 고려하여 얻은 것으로 앵커 표면 마찰각에 모래의 전단저항각을 적용해서 설계하면 위험측이 된다는 것도 알 수 있다.

  • PDF

기기기초 시스템의 보강방안에 대한 연구 (Study on Reinforcing Method of Equipment Foundation System)

  • 송영철;최홍식;조명석;우상균;이시우;이성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.367-370
    • /
    • 2003
  • This study was carried out to suggest the effective reinforcing method which can evaluate the tensile capacity of cast-in-place anchor with cracks. Currently, cast-in-place anchor is used widely for the fastening of equipment in Korean NPPs. 26 test specimens with a single anchor under 4 cracked conditions are prepared using plain concrete. The distance between crack and anchor and reinforcing materials were selected as the main test variable. The tensile force was applied using a actuator with a capacity of 100 tonf using a displacement control method of 0.5 mm/min velocity. Test results from this result show the combination of carbon plate and epoxy will be more available for repair and reinforcement of equipment foundation system in NPPs. Further experimental work is indeed involving the epoxy injection effect and adjustment of reinforcing location of carbon sheet.

  • PDF

Numerical Calculation of Flow Pattern and Fluid Force on a Circular Arc-type Sea Anchor

  • Ro, Ki-Deok;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1258-1269
    • /
    • 2004
  • The fluid dynamic characteristics of a circular arc type sea anchor were calculated by a discrete vortex method. The flow for the surface of the sea anchor was represented by arranging bound vortices at adequate intervals. The simulations were performed by assuming that the separations occur at edges. With time, the drag coefficient was almost constant but the lift coefficient oscillated in a cycle due to von Karman's vortex street. As the camber ratios increase, the drag coefficient and Strouhal number were almost constant but the oscillating amplitude of the lift coefficient increased largely.

Experimental study of embedding motion and holding power of drag embedment type anchor on hard and soft seafloor

  • Shin, Hyun-Kyoung;Seo, Byoung-Cheon;Lee, Jea-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.193-200
    • /
    • 2011
  • As larger ships and floating offshore structures are, and rougher the marine environment becomes nowadays, a drag embedment type anchor of more stable performance and higher holding power is requested. This paper describes an experimental study of the drag embedding motion and the resultant holding force of three types of drag embedment type anchor model (HALL, AC-14, SEC POOL-N, scale 1/10).