• Title/Summary/Keyword: anchor force

Search Result 212, Processing Time 0.026 seconds

Evaluation of Behaviors on Mooring Line Embedded in Sand Using Centrifuge Test (원심모형실험을 이용한 모래지반에 관입된 계류선 거동 평가)

  • Lee, Hoon Yong;Kim, Surin;Kim, Jaehyun;Kim, Dong-Soo;Choo, Yun Wook;Kwo, Osoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • When an anchor penetrates and is installed under a seabed, a portion of the mooring line connected to the anchor is also embedded under the seabed. This embedded mooring line affects the capacity of the anchor in two ways. First, the frictional resistance that occurs between the mooring line and the seabed reduces the pulling force acting on the anchor. Second, the embedded part of the mooring line forms a reverse catenary shape due to the bearing resistance of the soil, so that an inclined pulling force is applied to the anchor. To evaluate the mooring line's effect on the capacity of an anchor in sand, centrifuge model tests were performed using two relative sand densities of 76% and 51% while changing the anchor depths. The test results showed that the load is reduced much more in deep and dense sand, and the inclination angle of the load is lower in shallow and loose sand.

Finite Element Analysis of Concrete Railway Sleeper Damaged by Freezing Force of Water Penetrated into the Inserts (고속철도 콘크리트 궤도 매립전 내 침투수의 결빙압에 의한 균열손상해석)

  • Moon, Do-Young;Zi, Goang-Seup;Kim, Jin-Gyun;Jang, Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.240-247
    • /
    • 2011
  • Finite element analysis was undertaken to investigate the effect of freezing force of water unexpectedly penetrated into inserts used in railway sleeper on pullout capacity of anchor bolts for fixing base-plate onto concrete sleeper. Based on the in-situ investigation and measurement of geometry of railway sleeper and rail-fastener, the railway sleeper was modeled by 3D solid elements. Nonlinear and fracture properties for the finite element model were assumed according to CEB-FIP 1990 model code. And the pullout maximum load of anchor bolt obtained from the model developed was compared with experimental pullout maximum load presented by KRRI for verification of the model. Using this model, the effect of position of anchor bolt, amount of fastening force applied to the anchor bolt, and compressive strength of concrete on pull-out capacity of anchor bolts installed in railway sleeper was investigated. As a result, it is found that concrete railway sleepers could be damaged by the pressure due to freezing of water penetrated into inserts. And the pullout capacity of anchor bolt close to center of railway is slightly greater than that of the others.

A Study on the Anchoring Safety Assessment of E-Group Anchorage in Ulsan Port (울산항 E 집단정박지 묘박안전성 평가에 관한 연구)

  • Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2014
  • This study suggests the minimum critical external forces based on the assessment of anchoring safety to single anchor situation for representative 8 number of ships in E-group anchorage of Ulsan port. Assessment of anchoring safety is compared holding powers of anchor with external forces of wind, wave and current. Holding powers was reflected materials of seabed, equipment numbers regarding anchor and chain weight, also external forces acting on a hull was calculated considering projected wind area and wetted surface area to the full and ballast conditions respectively. The results of anchoring safety assessments to single anchor showed that the minimum criteria of dragging anchor is a little different from ship's type, size and loading conditions. Bulk carrier can be dragged over the 15m/s of winds and Tanker can be dragged over the 13m/s of winds in case of less than 2knots of currents speed.

A Study on the Limit of Anchor Dragging for Ship at Anchor( I ) (묘박 중인 선박의 주묘 한계에 관한 연구( I ))

  • Lee, Yun-Sok;Jung, Yun-Chul;Kim, Se-Won;Yun, Jong-Hwui;Bae, Suk-Han;Nguyen, Phung-Hung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.165-171
    • /
    • 2005
  • When typhoon approaches, ship normally drops her anchor at proper anchorage for sheltering. If an anchoring ship is under the influence of typhoon, she can keep her position when the external force and counter force is balanced. Where, external force is induced by wind, wave and tidal currents while counter force is induced by holding power of anchor/chain and thrust force of main engine. In this study, authors presented a method to analyze theoretically the limit of external force for the ship to keep her position without being dragged and, to check the validity of method, applied this to the ship which had been anchored in Jinhae Bay when the typhoon MAEMI passed on September 2003.

  • PDF

A Study on the Limit of Anchor Dragging for Ship at Anchor( I ) (묘박 중인 선박의 주묘 한계에 관한 연구( I ))

  • Lee Yun-Sok;Jung Yun-Chul;Kim Se-Won;Yun Jong-Hwui;Bae Suk-Han;Nguyen Phung-Hung
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.357-363
    • /
    • 2005
  • When typhoon approaches, ship normally drops her anchor at proper anchorage for sheltering. If an anchored ship is under the influence of typhoon, she can keep her position when the external force and counter force is balanced. Where, external force is induced by wind, wave and tidal currents while counter force is induced by holding power of anchor/chain and thrust force of main engine. In this study, authors presented a method to analyze theoretically the limit of external force for the ship to keep her position without being dragged and, to check the validity of the method, applied this to the ship which had been anchored in Jinhae Bay when the typhoon MAEMI passed on September 2003.

Palatal en-masse retraction of segmented maxillary anterior teeth: A finite element study

  • Park, Jae Hyun;Kook, Yoon-Ah;Kojima, Yukio;Yun, Sunock;Chae, Jong-Moon
    • The korean journal of orthodontics
    • /
    • v.49 no.3
    • /
    • pp.188-193
    • /
    • 2019
  • Objective: The aim of this finite element study was to clarify the mechanics of tooth movement in palatal en-masse retraction of segmented maxillary anterior teeth by using anchor screws and lever arms. Methods: A three-dimensional finite element method was used to simulate overall orthodontic tooth movements. The line of action of the force was varied by changing both the lever arm height and anchor screw position. Results: When the line of action of the force passed through the center of resistance (CR), the anterior teeth showed translation. However, when the line of action was not perpendicular to the long axis of the anterior teeth, the anterior teeth moved bodily with an unexpected intrusion even though the force was transmitted horizontally. To move the anterior teeth bodily without intrusion and extrusion, a downward force passing through the CR was necessary. When the line of action of the force passed apical to the CR, the anterior teeth tipped counterclockwise during retraction, and when the line of action of the force passed coronal to the CR, the anterior teeth tipped clockwise during retraction. Conclusions: The movement pattern of the anterior teeth changed depending on the combination of lever arm height and anchor screw position. However, this pattern may be unpredictable in clinical settings because the movement direction is not always equal to the force direction.

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.

Pullout Behavior Characteristics of Enlarged Cylinder Type Anchor Using Numerical Analysis (수치해석을 이용한 확공형 앵커의 인발거동 특성)

  • Moon, Joon-Shik;Lee, Min-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • Numerical analysis was carried out using a finite element analysis program to analyze the behavior characteristics of enlarged cylinder type anchor. It was found that the ultimate resistance of enlarged cylinder type anchor increases with the enlargement angle from numerical analysis for various enlargement angle cases. In the case of $30-60^{\circ}$ of enlargement angle, the deformation and stress distribution characteristics in anchor are similar regardless of enlargement angle. However, when the same tensile force is applied, there is a difference in the degree of frictional resistance because of difference of displacement of top of grouting zone. Also, it was found that the maximum compressive force and tensile force were generated at the cone of the upper portion of the grouting zone, and tensile fracture of the upper grouting portion is likely to occur.

Structural Analysis of Arch Anchor Brackets in Ground Anchor Construction (그라운드 앵커공법용 아치형 앵커브라켓의 구조해석)

  • Kim, Jae-Yeol;Kim, Young-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • When we excavate an underground to build basement, the ground anchors are needed to prevent collapse of neighboring ground, subsidence and movement. Ground anchor construction required shore sheet piles, wales and struts as to maintain secure excavation. Existing box-type bracket using head part of ground anchor can not be possibly adjustable to the boring angle because the brackets are manufactured with unified angle in a factory. Also, box-type brackets have imperfection and instability caused by inequable force. In this study, a new bracket system is proposed. The bracket's side plate is reinforced and the angle of boring can be controlled. To investigate the structural performance of presented brackets, FEM analysis has been performed by using ANSYS commercial program. As a result, this bracket shows sufficient stability for all angle case and the strength is increased about 24% than existing bracket.