• 제목/요약/키워드: anchor angle

검색결과 82건 처리시간 0.022초

Delayed Lateral Row Anchor Failure in Suture Bridge Rotator Cuff Repair: A Report of 3 Cases

  • Jeong, Jae-Jung;Ji, Jong-Hun;Park, Seok-Jae
    • Clinics in Shoulder and Elbow
    • /
    • 제21권4호
    • /
    • pp.246-251
    • /
    • 2018
  • Compared to single row repair, use of lateral row anchors in suture bridge rotator cuff repair enhances repair strength and increases footprint contact area. If a lateral knotless anchor (push-in design) is inserted into osteoporotic bone, pull-out of the lateral row anchor can developed. However, failures of lateral row anchors have been reported at several months after surgery. In our cases, even though complete cuff healing occurred, delayed pull-out of the lateral row anchor in the suture bridge repair occurred. In comparison to a conventional medial anchor, further biomechanical evaluation of the pull-out force, design, and insertion angle of the lateral anchor is needed in future studies. We report three cases with delayed pull-out of lateral row anchor in suture bridge rotator cuff repair with a literature review.

Development of an ACL Anchor: Effects of the Design Parameters on the Performance of a New Anterior Cruciate Ligament Fixation Device

  • Kim, Jong-Dae;Oh, Chae-Youn;Kim, Cheol-Sang
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.132-138
    • /
    • 2008
  • We investigated the biomechanical properties of a newly designed self-expansion type anterior cruciate ligament (ACL) anchor. The ACL anchor consists of the ring section giving the elastic force, the wedge for maintaining in contact with the femur tunnel wall and the link suspending hamstring graft or artificial ligament. The main design parameters that determine the performance of this device were the expansion angle (${\theta}$) and the thickness ($t_R$). The Ti6Al4V anchors were heated after inserting in a jig for 1 hour at $800^{\circ}C$ in a protective argon gas atmosphere and allowed to cool to room temperature in the furnace. In order to investigate the influence of the expansion angle and the thickness of the ring on the biomechanical properties of the anchor, the maximum pull-out load, stiffness and slippage of the ACL anchor were measured using the pull-out tester, and statistical analyses were also executed. The present results showed that the design parameters gave a significant effect on the performance of the self- expansion type of anchor. The pull-out load of the ACL anchors significantly increased as the thickness of the ring section was increased, having a similar trend for both expansion angles. The ACL anchor showed about 2.5 times higher values of the pull-out load than that of the minimum load (500N)required for the "accelerated rehabilitation". The optimum ${\theta}$ and $t_R$ values of this ACL anchor were suggested to have sufficient resistance against the pull-out force, high stiffness and relatively low slippage after ACL reconstruction.

CEL기법을 이용한 앵커 끌림 시뮬레이션에 의한 Rock-berm 설계 (Design of Rock-berm by Anchor Dragging Simulation using CEL Method)

  • 신문범;박동수;서영교
    • 한국해양공학회지
    • /
    • 제31권6호
    • /
    • pp.397-404
    • /
    • 2017
  • In this study, an anchor dragging simulation was performed using the CEL method to design a rock-berm, which is a protection method for submarine cables. In order to simulate an anchor drag, preliminary simulations were first performed to determine the initial anchor penetration depth, anchor drag velocity, drag angle, and distance between the anchor and rock-berm. Based on the preceding simulation results, a safe rock-berm design for protecting the submarine cables was simulated to calculate the anchor penetration depth by the anchor dragging. As a result, the penetration depth of the anchor was found to be shallower in a hard seabed, and the penetration depth was deeper in a soft seabed, the height of the rock-berm was determined according to the physical properties of the seabed.

앵커의 극한 지지력 변화와 파괴 거동에 관한 연구 (A Study on Variation of Ultimate Pullout Resistance and Failure Behavior for Vertical Plate Anchors in Sands)

  • 장병욱;황명수
    • 한국농공학회지
    • /
    • 제32권4호
    • /
    • pp.71-80
    • /
    • 1990
  • Model tests for the ultimate pullout resistance of anchorages and investigation of failure behaviors in cohesionless soil have been conducted. The factors affecting the anchorage are mostly the geometry of the system, and soil properties of sands. The main conclusions of the experimental work were as follows. 1. The load - displacement relationship can be a form of parabolic curve for all plates. 2. The change in ultimate pullout resistance of anchor is mostly affected by embedment ratio and size of anchor, and influenced to a lesser degree by its shape. 3. Critical embedment ratio which is defined as the failure mode changes from shallow to deep mode is increased with increasing height of anchor. 4. For a constant anchor height, as the width of anchor increases the ultimate pullout resistance also increases. However, considering the efficiency of anchor for unit area, width of anchor does not appear to have any sigrnificant contribution on increasing anchor city. 5. Anchor capacity has a linear relation to sand density for any given section and the rate of change increases as the section increases. Critical depth determining the failure patterns of anchor is decreased with a decrease of sand density. 6. With increasing inclination angle, size of anchor, and decreasing embedment ratio, the ultimate pullout resistance of anchor under inclined loading is significantly decreased. 7. The ultimate pullout resistance of double anchor, a method of improving single of anchor capacity, is influenced by the center - to - center spacing adjacent anchors. It is also found that tandem and parallel anchor rigging arrangements decrease the anchor system capacity to less than twice the single anchor capacity due to anchor interference.

  • PDF

5th%ile 여성 인체모형 뒷좌석 서브마린 방지에 대한 연구 (A Study on Protection of Rear Submarine of 5th percentile Female Dummy)

  • 김홍규;염선일;진욱
    • 자동차안전학회지
    • /
    • 제9권3호
    • /
    • pp.13-18
    • /
    • 2017
  • Since 2015, Euro-NCAP and C-NCAP have enhanced regulation on submarine of rear female passenger. This submarine regulation is a big obstacle to achieve the highest level crash performance. So the objective of this study is to develop new technical way to protect rear female passenger against submarine. In this study, we figured out how design factors of seatbelt affect submarine of rear female passenger by sled test. And we verified that rear passenger submarine can be improved by increasing intersection angle of seatbelt anchor and rotation amount of seatbelt buckle. Based on these results, this paper proposes a new invention of seatbelt buckle and anchor that can improve rear passenger submarine. One is seatbelt buckle that can be detached from stopper to prevent rotation and the other is seatbelt anchor that can be changed the structure so as to incline forward during crash. Finally we proved that submarine of rear female passenger can be improved by the effectiveness of new inventions.

평면변형률 상태에 있는 연직지반앵커의 파괴모-드 (Failure Modes of Vertical Ground Anchor in Plane Strain)

  • 임종철;용강문부;박성재
    • 한국지반공학회지:지반
    • /
    • 제6권1호
    • /
    • pp.43-58
    • /
    • 1990
  • 지반앵커의 극한인기저항흉을 구하기 위해서는 파괴면의 위치, 파괴면 위의 수직응력 및 마찰각 을 알지 않으면 안된다. 본 연구에서는 평면변형률 모형실험을 통해서, 앵커주변지반의 변형을 관찰하여 파괴면의 위치를 구하고, 앵커표면의 수직응력,전단응력을 실측하므로써 앵커표면의 응력상태를 분석했다. 그리고, 측압계수와 파괴면의 위치의 관계(파괴모-드)를 구하구 무차원 계수인 극한인발저항력계수를 이용하여 극한51기저항력의 산정식을 제안했다.

  • PDF

원심모형실험을 이용한 모래지반에 관입된 계류선 거동 평가 (Evaluation of Behaviors on Mooring Line Embedded in Sand Using Centrifuge Test)

  • 이훈용;김수린;김재현;김동수;추연욱;권오순
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.47-54
    • /
    • 2014
  • When an anchor penetrates and is installed under a seabed, a portion of the mooring line connected to the anchor is also embedded under the seabed. This embedded mooring line affects the capacity of the anchor in two ways. First, the frictional resistance that occurs between the mooring line and the seabed reduces the pulling force acting on the anchor. Second, the embedded part of the mooring line forms a reverse catenary shape due to the bearing resistance of the soil, so that an inclined pulling force is applied to the anchor. To evaluate the mooring line's effect on the capacity of an anchor in sand, centrifuge model tests were performed using two relative sand densities of 76% and 51% while changing the anchor depths. The test results showed that the load is reduced much more in deep and dense sand, and the inclination angle of the load is lower in shallow and loose sand.

Shear behavior of exposed column base connections

  • Cui, Yao
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.357-371
    • /
    • 2016
  • Column base connections are critical components in steel structures because they transfer axial forces, shear forces and moments to the foundation. Exposed column bases are quite commonly used in low- to medium-rise buildings. To investigate shear transfer in exposed column base plates, four large scale specimens were subjected to a combination of axial load (compression or tension) and lateral shear deformations. The main parameters examined experimentally include the number of anchor rod, arrangement of anchor rod, type of lateral loading, and axial force ratio. It is observed that the shear resisting mechanism of exposed column base changed as the axial force changed. When the axial force is in compression, the resisting mechanism is rotation type, and the shear force will be resisted by friction force between base plate and mortar layer. The specimens could sustain inelastic deformation with minimal strength deterioration up to column rotation angle of 3%. The moment resistance and energy dissipation will be increased as the number of anchor rods increased. Moreover, moment resistance could be further increased if the anchor rods were arranged in details. When the axial force is in tension, the resisting mechanism is slip type, and the shear force will be resisted by the anchor rods. And the shear resistance was reduced significantly when the axial force was changed from compression to tension. The test results indicated that the current design approach could estimate the moment resistance within reasonable acceptance, but overestimate the shear resistance of exposed column base.

Anchor Plate Efficiency in Postoperative Orthodontic Treatment Following Orthognathic Surgery via Minimal Presurgical Orthodontic Treatment

  • Jeong, Tae-Min;Kim, Yoon-Ho;Song, Seung-Il
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제36권4호
    • /
    • pp.154-160
    • /
    • 2014
  • Purpose: The efficiency of an anchor plate placed during orthognathic surgery via minimal presurgical orthodontic treatment was evaluated by analyzing the mandibular relapse rate and dental changes. Methods: The subjects included nine patients with Class III malocclusion who had bilateral sagittal split osteotomy at the Division of Oral and Maxillofacial Surgery, Department of Dentistry in Ajou University Hospital, after minimal presurgical orthodontic treatment. During orthognathic surgery, anchor plates were placed at both maxillary buttresses. The anchor plates were used to move maxillary teeth backward and for maximum anchorage of Class III elastics to minimize mandibular relapse during the postoperative orthodontic treatment. The lateral cephalometric X-ray was taken preoperatively (T0), postoperatively (T1), and one year after the surgery (T2). Seven measurements (distance from Pogonion to line Nasion-Nasion perpendicular [Pog-N Per.], angle of line B point-Nasion and Nasion-Sella [SNB], angle of line maxilla 1 root-maxilla 1 crown and Nasion-Sella [U1 to SN], distance from maxilla 1 crown to line A point-Nasion [U1 to NA], overbite, overjet, and interincisal angle) were taken. Measurements at T0 to T1 and T1 to T2 were compared and differences tested by standard statistical methods. Results: The mean skeletal change was posterior movement by $13.87{\pm}4.95mm$ based on pogonion from T0 to T1, and anterior movement by $1.54{\pm}2.18mm$ from T1 to T2, showing relapse of about 10.2%. There were significant changes from T0 to T1 for both Pog-N Per. and SNB (P<0.05). However, there were no statistically significant changes from T1 to T2 for both Pog-N Per. and SNB. U1 to NA that represents the anterior-posterior changes of maxillary incisor did not differ from T0 to T1, yet there was a significant change from T1 to T2 (P<0.05). Conclusion: This study found that the anchor plate minimizes mandibular relapse and moves the maxillary teeth backward during the postoperative orthodontic treatment. Thus, we conclude that the anchor plate is clinically very useful.

Mooring Cost Sensitivity Study Based on Cost-Optimum Mooring Design

  • Ryu, Sam Sangsoo;Heyl, Caspar;Duggal, Arun
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.1-6
    • /
    • 2009
  • The paper describes results of a sensitivity study on an optimum mooring cost as a function of safety factor and allowable maximum offset of the offshore floating structure by finding the anchor leg component size and the declination angle. A harmony search (HS) based mooring optimization program was developed to conduct the study. This mooring optimization model was integrated with a frequency-domain global motion analysis program to assess both cost and design constraints of the mooring system. To find a trend of anchor leg system cost for the proposed sensitivity study, optimum costs after a certain number of improvisation were found and compared. For a case study a turret-moored FPSO with 3 ${\times}$ 3 anchor leg system was considered. To better guide search for the optimum cost, three different penalty functions were applied. The results show that the presented HS-based cost-optimum offshore mooring design tool can be used to find optimum mooring design values such as declination angle and horizontal end point separation as well as a cost-optimum mooring system in case either the allowable maximum offset or factor of safety varies.