• Title/Summary/Keyword: anchor angle

Search Result 82, Processing Time 0.026 seconds

Structural Analysis of Arch Anchor Brackets in Ground Anchor Construction (그라운드 앵커공법용 아치형 앵커브라켓의 구조해석)

  • Kim, Jae-Yeol;Kim, Young-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • When we excavate an underground to build basement, the ground anchors are needed to prevent collapse of neighboring ground, subsidence and movement. Ground anchor construction required shore sheet piles, wales and struts as to maintain secure excavation. Existing box-type bracket using head part of ground anchor can not be possibly adjustable to the boring angle because the brackets are manufactured with unified angle in a factory. Also, box-type brackets have imperfection and instability caused by inequable force. In this study, a new bracket system is proposed. The bracket's side plate is reinforced and the angle of boring can be controlled. To investigate the structural performance of presented brackets, FEM analysis has been performed by using ANSYS commercial program. As a result, this bracket shows sufficient stability for all angle case and the strength is increased about 24% than existing bracket.

Friction Angle on the Surface of Vertical Ground Anchor in Sand (모래지반내의 연직 지반앵커 표면의 마찰각)

  • 임종철
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.99-110
    • /
    • 1995
  • In this study, friction angles on the surface of vertical rigid ground anchor in normally consolidated dry sand were measured by model pullout tests in laboratory. Friction angles were obtained from the normal and shear stresses measured along depth of the anchor stir face by attaching several 2-dimensional load cells. Model tests were conducted under the plane strain state and axial symmetric state. From the results of tests, it was concluded that the maximum friction angle on the anchor surface coincides nearly with the maximum angle of stress obliquity on the plane of zero-extension direction obtained by plane strain compression test. This result was made with regard to the strength anisotropy and stress dependency of sand. It showed that when angle of shear resistance of the sand is applied to the friction angle of the anchor surface, the design capacity could be less than the applied force, thus making the anchor unsafe.

  • PDF

Uplift capacity of horizontal anchor plate embedded near to the cohesionless slope by limit analysis

  • Bhattacharya, Paramita;Sahoo, Sagarika
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.701-714
    • /
    • 2017
  • The effect of nearby cohesionless sloping ground on the uplift capacity of horizontal strip plate anchor embedded in sand deposit with horizontal ground surface has been studied numerically. The numerical analysis has been carried out by using the lower bound theorem of limit analysis with finite elements and linear optimization. The results have been presented in the form of non-dimensional uplift capacity factor of anchor plate by changing its distance from the slope crest for different slope angles, embedment ratios and angles of soil internal friction. It has been found that the decrease in horizontal distance between the edge of the anchor plate and the slope crest causes a continuous decrease in uplift capacity of anchor plate. The optimum distance is that distance between slope crest and anchor plate below which uplift capacity of an anchor plate has been found to decrease with a decrease in normalized crest distance from the anchor plate in presence of nearby sloping ground. The normalized optimum distance between the slope crest and the anchor plate has been found to increase with an increase in slope angle, embedment ratio and soil internal friction angle.

Single -portal Subscapualrs tendon repair

  • Choe, Chang-Hyeok;Kim, Sin-Geun;Jang, Ho-Jin;Chae, Seong-Beom
    • The Academic Congress of Korean Shoulder and Elbow Society
    • /
    • 2008.03a
    • /
    • pp.179-179
    • /
    • 2008
  • For a partial tear of the subscapularis tendon, the presenting technique requires only the anterior portal for preparing the footprint and suture management, as well as the subclavian portal for placing the suture anchor and suture hook without inserting a cannula. It provides both a good angle for anchor placement and sufficient space for managing the upper portion of a subscapularis tendon tear. A spinal needle was inserted through the subclavian portal in order to identify the appropriate angle for placing the suture anchor. A 3-mm incision was made for the subclavian portal and a biosuture anchor was placed on the footprint portion of the subscapularis tendon. In order to avoid crowding, each limb of both strands of the biosuture anchor were passed through the tendon- posteromedial side first, and anterolateral side second, using a switching technique with suture hook embedded with no.1 PDS. A suture tie was applied in a reverse sequence (the lateral strand first and the medial strand second) through the anterior cannula using a sliding technique.

  • PDF

Improvement in uplift capacity of horizontal circular anchor plate in undrained clay by granular column

  • Bhattacharya, Paramita;Roy, Anamitra
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.617-633
    • /
    • 2016
  • A numerical study has been conducted to examine the improvement achieved in the ultimate pullout capacity of horizontal circular anchor plates embedded in undrained clay, by constructing granular columns of varying diameter over the anchor plates. The analysis has been carried out by using lower bound theorem of limit analysis and finite elements in combination with linear programming. The improvement in uplifting capacity of anchor plate is expressed in terms of an efficiency factor (${\xi}$). The efficiency factor (${\xi}$) has been defined as the ratio of ultimate vertical pullout capacity of anchor plate having diameter D embedded in soft clay reinforced by granular column to the vertical pullout capacity of the anchor plate with same diameter D embedded in soft clay only. The variation of efficiency factor (${\xi}$) for different embedment ratios and different diameter of granular column has been studied considering a wide range of softness of clay and different value of soil internal friction angle (${\phi}$) of the granular material. It is observed that ${\xi}$ increases with an increase in diameter of the granular column ($D_t$) and increase in friction angle of granular material. Also, the effectiveness of the usage of granular column increases with decrease in cohesion of the clay.

Pull - out Capacity of Ground Anchor in Weathered Rock (풍화암 지반에 정착된 앵커의 인발저항 특성)

  • 이승환;황의석;이봉열;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.435-442
    • /
    • 2002
  • Fluid Confirmation Tests(FCT) on 1500 ground Anchors install in weathered rock were carried out to investigate upper and lower limit of elastic elongation, frictional resistant of fixed anchor body, mobilized angle between anchor body and soil. All the measured data were analysed and compared with theoretical equations. The frictional angles of diaphragm wall and anchorage system in weathered rock showed nonlinear curve between upper and lower limit of standard elongation. The FCT results indicated that the frictional resistant angles increased with higher values of surcharge load. The quality assurance on the fixed anchor location was investigated by means of measuring elastic elongation during the FCT, and comparing these with theoretical design length, the quality of anchors in this particular site found to be above average standard. The results of this research works with provide valuable guide line on quality assurance of anchors system as well as resonable prediction of friction resistance between the fixed anchor body and the weathered rock.

  • PDF

Pullout Behavior Characteristics of Enlarged Cylinder Type Anchor Using Numerical Analysis (수치해석을 이용한 확공형 앵커의 인발거동 특성)

  • Moon, Joon-Shik;Lee, Min-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • Numerical analysis was carried out using a finite element analysis program to analyze the behavior characteristics of enlarged cylinder type anchor. It was found that the ultimate resistance of enlarged cylinder type anchor increases with the enlargement angle from numerical analysis for various enlargement angle cases. In the case of $30-60^{\circ}$ of enlargement angle, the deformation and stress distribution characteristics in anchor are similar regardless of enlargement angle. However, when the same tensile force is applied, there is a difference in the degree of frictional resistance because of difference of displacement of top of grouting zone. Also, it was found that the maximum compressive force and tensile force were generated at the cone of the upper portion of the grouting zone, and tensile fracture of the upper grouting portion is likely to occur.

Damage Evaluation of Flexible Concrete Mattress Considering Steel Reinforcement Modeling and Collision Angle of Anchor (철근의 영향과 앵커 충돌각도를 고려한 유연콘크리트 매트리스의 손상평가)

  • Ryu, Yeon-Sun;Cho, Hyun-Man;Kim, Seo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • A flexible concrete mattress (FCM) is a structural system for protecting submarine power or communication cables under various load types. To evaluate its of protection performance, a numerical analysis of an FCM under an anchor collision was performed. The explicit dynamics of the finite element analysis program ANSYS were used for the collision analysis. The influences of the steel reinforcement modeling and collision angle of the anchor on the collision behavior of the FCM were estimated. The FCM damage was evaluated based on the results of the numerical analysis considering the numerical modeling and collision environment.

Shear Strength of Anchors under Load Applied Angle and a Group Anchors at an Edge (앵커간격 및 하중방향에 따른 앵커의 전단내력)

  • Kim, Sung-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.133-141
    • /
    • 2003
  • This study concerns the prediction of shear capacity, as governed by concrete breakout failure of the anchors under load applied angle and an group anchors at an edge and installed in uncracked, unreinforced concrete. For this purpose, the methods to evaluate the shear capacity of the anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods: the method of ACI 349-90 and concrete capacity design (CCD) method.

Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor

  • Zhu, Hong-Hu;Mei, Guo-Xiong;Xu, Min;Liu, Yi;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.165-181
    • /
    • 2014
  • In the past decade, different types of underreamed ground anchors have been developed for substructures requiring uplift resistance. This article introduces a new type of umbrella-shaped anchor. The uplift behavior of this ground anchor in clay is studied through a series of laboratory and field uplift tests. The test results show that the umbrella-shaped anchor has higher uplift capacity than conventional anchors. The failure mode of the umbrella-shaped anchor in a large embedment depth can be characterized by an arc failure surface and the dimension of the plastic zone depends on the anchor diameter. The anchor diameter and embedment depth have significant influence on the uplift behavior. A finite element model is established to simulate the pullout of the ground anchor. A parametric study using this model is conducted to study the effects of the elastic modulus, cohesion, and friction angle of soils on the load-displacement relationship of the ground anchor. It is found that the larger the elastic modulus and the shear strength parameters, the higher the uplift capacity of the ground anchor. It is suggested that in engineering design, the soil with stiffer modulus and higher shear strength should be selected as the bearing stratum of this type of anchor.