• Title/Summary/Keyword: analytical verification

Search Result 349, Processing Time 0.023 seconds

An analytical study on behavior of the girder panel in simplified composite deck under construction loadings (가설하중 하에서 초간편 강합성 바닥판 거더패널의 거동에 관한 해석적 연구)

  • Han, Deuk-Cheon;Kim, Sang-Seup;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1537-1542
    • /
    • 2007
  • In this study, based on a I-roll embedded steel composite deck, it is suggested a new type of simplified composite deck and analyzed under construction loading. Using ABAQUS, it's estimated effects of welding amount of steel plate and I-section, existence of a hole of I-section's flange, and a location of hole. For a reasonable verification of modeling, compare Euler-Beam theory with F.E.M models. In result, it is verified that change of welding amount increase more maximum bending tension stresses at the central part's section of span when elements are partial-welded. Also, verify that deflection is slightly increased when a hole existed compared with no hole.

  • PDF

Design and Performance Analysis of a Noncoherent Code Tracking Loop for 3GPP MODEM (3GPP 모뎀용 동기 추적회로의 설계 및 성능 분석)

  • 양연실;박형래
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.983-990
    • /
    • 2003
  • In this paper, a noncoherent code tracking loop is designed for 3GPP MODEM and its performance is analyzed in terms of steady-state jitter variance and transient response characteristics. An analytical closed-form formula for steady-state jitter variance is Int derived for AWGN environments as a general function of a pulse-shaping filter, timing offset, signal-to-interference ratio, and loop bandwidth, together with the analysis on the transient response characteristic of a tracking loop. Based on the analysis, the code tracking loop with variable loop bandwidth that is efficient for full digital H/W implementation is designed and its performance is compared with that of the code tracking loop with fixed loop bandwidth, along with the verification by computer simulations.

A PROCEDURE FOR GENERATING IN-CABINET RESPONSE SPECTRA BASED ON STATE-SPACE MODEL IDENTIFICATION BY IMPACT TESTING

  • Cho, Sung-Gook;Cui, Jintao;Kim, Doo-Kie
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.573-582
    • /
    • 2011
  • The in-cabinet response spectrum is used to define the input motion in the seismic qualification of instruments and devices mounted inside an electrical cabinet. This paper presents a procedure for generating the in-cabinet response spectrum for electrical equipment based on in-situ testing by an impact hammer. The proposed procedure includes an algorithm to build the relationship between the impact forces and the measured acceleration responses of cabinet structures by estimating the state-space model. This model is used to predict seismic responses to the equivalent earthquake forces. Three types of structural model are analyzed for numerical verification of the proposed method. A comparison of predicted and simulated response spectra shows good convergence, demonstrating the potential of the proposed method to predict the response spectra for real cabinet structures using vibration tests. The presented procedure eliminates the uncertainty associated with constructing an analytical model of the electrical cabinet, which has complex mass distribution and stiffness.

Thermal load analysis in an incompressible linear visco-elastic cylinder bonded to an elastic shell (非壓縮 粘彈性 圓筒體의 熱荷重 解析)

  • 이영신;최용규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.205-213
    • /
    • 1987
  • A linear thermoviscoelastic material model, whose basis is on incremental constitutive equation that takes complete strain and temperature histories into account, is derived and computerized in the finite element code. The thermoviscoelastic F.E.M. code which is intended primarily to analyze the cylinder model during the cool-down period, embodies the assumption of linearly elastic bulk and visco-elastic shear responses, thermo-rheologically simple response to temperature change and isotropic thermal expansion. The verification of computer program is accomplished by first testing it against a closed form solution of A.M. Freudenthal & M. Shinozuka's. The stress and strain analyses of five cylindrical models are presented and compared with experimental results. Analytical results are good agreement with experimental results. Margins of safety are evaluated and its allowable ranges are presented.

Digital Twin Model of a Beam Structure Using Strain Measurement Data (보 구조물에서 변형률 계측 데이터를 활용한 디지털트윈 모델 구현)

  • Han, Man-Seok;Shin, Soo-Bong;Moon, Tae-Uk;Kim, Da-Un;Lee, Jong-Han
    • Journal of KIBIM
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Digital twin technology has been actively developed to monitor and assess the current state of actual structures. The digital twin changes the traditional observation method performed in the field to the real-time observation and detection system using virtual online model. Thus, this study designed a digital twin model for a beam and examined the feasibility of the digital twin for bridges. To reflect the current state of the bridge, model updating was performed according to the field test data to construct an analysis model. Based on the constructed bridge analysis model, the relationship between strain and displacement was used to represent a virtual model that behaves in the same way as the actual structure. The strain and displacement relationship was expressed as a matrix derived using an approximate analytical theory. Then, displacements can be obtained using the measured data obtained from strain sensors installed on the bridge. The coordinates of the obtained displacements are used to construct a virtual digital model for the bridge. For verification, a beam was fabricated and tested to evaluate the digital twin model constructed in this study. The displacements obtained from the strain and displacement relationship agrees well with the actual displacements of the beam. In addition, the displacements obtained from the virtual model was visualized at the locations of the strain sensor.

Flexural ductility of reinforced and prestressed concrete sections with corrugated steel webs

  • Chen, X.C.;Au, F.T.K.;Bai, Z.Z.;Li, Z.H.;Jiang, R.J.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.625-642
    • /
    • 2015
  • Prestressed concrete bridges with corrugated steel webs have emerged as one of the promising bridge forms. This structural form provides excellent structural efficiency with the concrete flanges primarily taking bending and the corrugated steel webs primarily taking shear. In the design of this type of bridges, the flexural ductility and deformability as well as strength need to be carefully examined. Evaluation of these safety-related attributes requires the estimation of full-range behaviour. In this study, the full-range behaviour of beam sections with corrugated steel webs is evaluated by means of a nonlinear analytical method which uses the actual stress-strain curves of the materials and considers the path-dependence of materials. In view of the different behaviour of components and the large shear deformation of corrugated steel webs with negligible longitudinal stiffness, the assumption that plane sections remain plane may no longer be valid. The interaction between shear deformation and local bending of flanges may cause additional stress in flanges, which is considered in this study. The numerical results obtained are compared with experimental results for verification. A parametric study is undertaken to clarify the effects of various parameters on ductility, deformability and strength.

Investigation of a new steel-concrete connection for composite bridges

  • Papastergiou, Dimitrios;Lebet, Jean-Paul
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.573-599
    • /
    • 2014
  • A new type of connection for steel-concrete composite bridges was developed by the Steel Structures Laboratory of Ecole Poytechinque $F{\acute{e}}d{\acute{e}}rale$ de Lausanne. Resistance to longitudinal shear is based on the development of shear stresses in the confined interfaces which form the connection. Confinement is provided by the reinforced concrete slab which encloses the connection and restrains the uplift (lateral separation) of the interfaces by developing normal stresses. The experimental investigation of the interfaces, under static and cyclic loading, enabled the development of the laws describing the structural behaviour of each interface. Those laws were presented by the authors in previous papers. The current paper focuses on the continuity of the research. It presents the experimental investigation on the new connection by means of push-out tests on specimens submitted to static and cyclic shear loading. Investigation revealed that the damage in the connection, due to cyclic loading, is expressed by the accumulation of a residual slip. A safe fatigue failure criterion is proposed for the connection which enabled the verification of the connection for the fatigue limit state with respect to the limit of fatigue. A numerical model is developed which takes into account the laws describing the interface behaviour and the analytical expressions for the confinement effect, the latter obtained by performing finite element analysis. This numerical model predicts the shear resistance of the connection and enables to assess its fatigue limit which is necessary for the fatigue design proposed.

Investigation of structural responses of breakwaters for green water based on fluid-structure interaction analysis

  • Lee, Chi-Seung;Heo, Haeng-Sung;Kim, Young-Nam;Kim, Myung-Hyun;Kim, Sang-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • In the present study, the structural response of breakwaters installed on container carriers against green water impact loads was numerically investigated on the basis of the fluid-structure interaction analysis. A series of numerical studies is carried out to induce breakwater collapse under such conditions, whereby a widely accepted fluid-structure interaction analysis technique is adopted to realistically consider the phenomenon of green water impact loads. In addition, the structural behaviour of these breakwaters under green water impact loads is investigated simultaneously throughout the transient analysis. A verification study of the numerical results is performed using data from actual collapse incidents of breakwaters on container carriers. On the basis of the results of a series of numerical analyses, the pressure distribution of green water was accurately predicted with respect to wave mass and velocity. It is expected that the proposed analytical methodology and predicted pressure distribution could be used as a practical guideline for the design of breakwaters on container carriers.

Development of a Numerical Method of Vertical Train/Track Interaction in the Track Section with Hanging Sleepers (뜬침목구간에서 차량/궤도 상호작용 수치해석기법 개발)

  • Yang, Sin-Chu;Lee, Jee-Ha
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.251-256
    • /
    • 2012
  • Hanging sleepers are frequently observed in the ballasted track with the rail of high rigidity. These hanging sleepers at the high speed line could cause such large dynamic force compared to those at the conventional line. This dynamic force would, in turn, deteriorate train running stability as well as riding comfort, and accelerate irregularity of track and failure of track materials, leading to a sharp increase in track maintenance cost. When the wheel-rail contact spring exhibits nonlinear behavior and some components of the system like hanging sleeper exhibit bi-linear behaviors, an effective analytical method is proposed for train-track interactions. The verification of the present method is carried out comparing numerical results by the present method and those by Ono's method of RTRI.

Safety Verification of Gantry Cranes using Hydraulic Cylinders (유압실린더를 사용한 갠트리 크레인의 안전성 검증)

  • Ko, Seong-Hoon;Lee, Kwang-Hee;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.8-14
    • /
    • 2019
  • A typical gantry crane is generally used to lift and transport objects in various workplaces. Most of the supporting structures in a gantry crane are fixed on the ground while the moving hoist is running overhead along the girder. There are some disadvantages to its long installation time and high installation cost. Therefore, a hydraulic based gantry crane was studied to solve the issues of typical gantry cranes. The supporting structure of the proposed gantry crane consisted of a hydraulic cylinder and telescopic boom. The dimension of the proposed gantry crane can be decreased due to its simplified structure. The analytical and theoretical methods were used to verify the structural stability of the proposed crane. The most severe load condition was considered for the analysis, and the stress and deflection of the structure are analyzed. The simulation results were as expected from the theoretical analysis. Finally, the structural and dynamic safety of the proposed hydraulic based gantry crane was validated. The obtained results can be used as guidelines in the design process of the hydraulic based gantry crane.