• Title/Summary/Keyword: analytical threshold

Search Result 172, Processing Time 0.029 seconds

An analytical model for inversion layer electron mobility in MOSFET (MOS소자 반전층의 전자이동도에 대한 해석적 모델)

  • 신형순
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.174-179
    • /
    • 1996
  • We present a new physically based analytical equation for electron effective mobility in MOS inversion layers. The new semi-empirical model is accounting expicitly for surface roughness scattering and screened Coulomb scattering in addition to phonon scattering. This model shows excellent agreement with experimentally measured effective mobility data from three different published sources for a wide range of effective transverse field, channel doping and temperature. By accounting for screened Coulomb scattering due to doping impurities in the channel, our model describes very well the roll-off of effective mobility in the low field (threshold) region for a wide range of channel doping level (Na=3.0*10$^{14}$ - 2.8*10$^{18}$ cm$^{-3}$ ).

  • PDF

A Robust Method of Fault Diagnosis for Steer-by-Wire System's Sensor (Steer-by-Wire 시스템의 감지기에 대한 강인한 이상진단기법)

  • Moon S.W.;Ji Y.K.;Huh K.S.;Cho D.I.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1463-1467
    • /
    • 2005
  • This paper proposes an analytical redundancy technique for fault diagnostics of the sensor in steer-by-wire system. We use incorporating vehicle dynamics modeling into the design of a diagnostic system for steer-by-wire system. The use of a model of vehicle dynamics improves the speed and accuracy of the diagnoses. The proposed fault diagnostics algorithm is based on parity-space methods to generate residuals. To reduce the effects of modeling uncertainty and dynamic transients, the residuals are subject to filtering. We construct diagnostic system consisting residual threshold for detection and isolator with using the directional residual vector.

  • PDF

DYNAMIC BEHAVIOUR FOR A NONAUTONOMOUS SMOKING DYNAMICAL MODEL WITH DISTRIBUTED TIME DELAY

  • Samanta, G.P.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.721-741
    • /
    • 2011
  • In this paper we have considered a dynamical mathematical model of the sub-populations of potential smokers (non-smokers), smokers, smokers who temporarily quit smoking, smokers who permanently quit smoking and a class of smoking associated illness by introducing time dependent parameters and distributed time delay to acquire smoking habit. Here, we have established some sufficient conditions on the permanence and extinction of the smoking class in the community by using inequality analytical technique. We have introduced some new threshold values $R_0$ and $R^*$ and further obtained that the smoking class in the community will be permanent when $R_0$ > 1 and the smoking class in the community will be going to extinct when $R^*$ < 1. By Lyapunov functional method, we have also obtained some sufficient conditions for global asymptotic stability of this model. Computer simulations are carried out to explain the analytical findings. The aim of the analysis of this model is to identify the parameters of interest for further study, with a view to informing and assisting policy-maker in targeting prevention and treatment resources for maximum effectiveness.

A Modeling and Numerical Simulation of Treshold Voltage for Short Channel MOSFET (단 채널 MOSFET의 문턱 전압 모델링과 수치계산)

  • 강정진;이종악
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 1990
  • In this paper, I derived a two-dimensional analytical closed-form expression of the threshold voltage for small size MOSFET. The invalid assumptions of constant surface portential or uniform depletion depth were corrected. A comparison between the results of pre-models analyses and the present's proved that this paper's model is quite accurate. Therefore, this model will become a useful design tool for short channel MOSFET.

  • PDF

A Compact Quantum Model for Cylindrical Surrounding Gate MOSFETs using High-k Dielectrics

  • Vimala, P.;Balamurugan, N.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.649-654
    • /
    • 2014
  • In this paper, an analytical model for Surrounding Gate (SG) metal-oxide- semiconductor field effect transistors (MOSFETs) considering quantum effects is presented. To achieve this goal, we have used variational approach for solving the Poission and Schrodinger equations. This model is developed to provide an analytical expression for inversion charge distribution function for all regions of device operation. This expression is used to calculate the other important parameters like inversion charge density, threshold voltage, drain current and gate capacitance. The calculated expressions for the above parameters are simple and accurate. This paper also focuses on the gate tunneling issue associated with high dielectric constant. The validity of this model was checked for the devices with different dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement.

Banding Artifacts Reduction Method in Multitoning Based on Threshold Modulation of MJBNM (MJBNM의 임계값 변조를 이용한 멀티토닝에서의 띠 결점 감소 방법)

  • Park Tae-Yong;Lee Myong-Young;Son Chang-Hwan;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.40-47
    • /
    • 2006
  • This paper proposes a multitoning method using threshold modulation of MJBNM(Modified Jointly Blue Noise Mask) for banding artifacts reduction. As banding artifacts in multitoning appear as uniform dot distributions around the intermediate output levels, such multitone output results in discontinuity and visually unpleasing patterns in smooth transition regions. Therefore, to reduce these banding artifacts, the proposed method rearranges the dot distribution by introducing pixels in the neighborhood of output levels that occurs banding artifacts. First of all principal cause of banding artifacts are analyzed using mathematical description. Based on this analytical result, a threshold modulation technique of MJBNM which takes account of chrominance error and correlation between channels is applied. The original threshold range of MJBNM is first scaled linearly sot that the minimum and maximum of the scaled range include two pixel more than adjacent two output levels that cover an input value. In an input value is inside the vicinity of any intermediate output levels produce banding artifacts, the output is set to one of neighboring output levels based on the pointwise comparison result according to threshold modulation parameter that determines the dot density and distribution. In this case, adjacent pixels are introduced at the position where the scaled threshold values are located between two output levels and the minimum and maximum threshold values. Otherwise, a conventional multitoning method is applied. As a result, the proposed method effectively decreased the appearance of banding artifacts around the intermediate output levels. To evaluate the quality of the multitone result, HVS-WRMSE according to gray level for gray ramp image and S-CIELAB color difference for color ramp image are compared with other methods.

Relations between Resonance Structures in Photoionization Spectra in Three-Channel-Systems Studied by Multichannel Quantum Defect Theory

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2168-2176
    • /
    • 2012
  • Relations between fitted parameters for photoionization spectra both below and above the thresholds in the systems involving 3 channels are obtained using phase-shifted version of the multichannel quantum-defect theory. Analytical continuation of the photoionization cross sections in the form of ${\langle}{\sigma}_{below}{\rangle}_{v_{below}}={\sigma}_{above}$ examined using several representations.

Simulation of 4H-SiC MESFET for High Power and High Frequency Response

  • Chattopadhyay, S.N.;Pandey, P.;Overton, C.B.;Krishnamoorthy, S.;Leong, S.K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.251-263
    • /
    • 2008
  • In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.

Fast Neutron Dosimetry in Criticality Accidents (핵임계사고시(核臨界事故時)에 있어서 속중성자선량(速中性子線量)의 해석(解析))

  • Ro, Seung-Gy;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 1976
  • A suggestion has been made for neutron dosimetric techniques using activation and threshold detectors in criticality accidents. Neutron dosimetrical parameters, namely, the fission spectrum-averaged cross-sections of some threshold reactions and fluence-to-dose conversion factors have been calculated by the use of an electronic computer. It appears that detectors having comparatively high threshold energy give more fine information on spectral deformation in criticality accidents, while detectors with low threshold energy are of usefulness for measuring fast neutron fluence regardless of fissioning types. Unexpectedly it is found that the fission spectrum-averaged cross sections of the $^{32}S(n,\;p)^{32}P$ reaction is not sensitive to analytical forms of fission neutron spectrum: the modified Cran-berg and Maxwellian forms. In addition, the fluence-to-dose conversion factors seem to be insensitive to both spectral functions and fissioning types.

  • PDF

Ultrasound Imaging and Electrophysiological Characteristic According to Activity Levels of Myofascial Trigger Point (근근막 발통점의 활성도에 따른 초음파 영상구조 및 전기생리학적 특성)

  • Kim, Hyun-Jin;Kim, Su-Hyun;Park, Young-Hyun;Oh, Seok;Choi, Ji-Ho;Kim, Tae-Youl
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2010
  • Purpose : This study is to offer clinical primary data that examines the change of imaging structure and the quantitative evaluation of muscle activity on myofascial trigger points. This study examines neuromuscular physiological characteristic by comparing the differences in physical findings, pressure pain threshold, imaging, and electrophysiological characteristics in latent and active myofascial trigger points muscle and normal muscle through the following experimental procedures. Methods : The participants for the study were thirty-three adults in their twenties. We divided three groups into normal, latent and active myofascial trigger points groups by physical findings. We analyzed the results of measured pressure pain, threshold for pain, ultrasound imaging perform for structure characteristic of muscle, surface EMG according to type of muscle contraction for function of muscle contraction. Results : Significant differences were indicated in pressure pain threshold (p<0.05). Significant differences were discovered in the ultrasound imaging analysis. There were increases in muscle Echogenicity white area index (p<0.001). There were significant differences that decrease in %MVIC (p<0.05), increase in MDF (p<0.05). Conclusion : From these results, active rnyotascial trigger points muscle showed quality deterioration on ultrasound imaging and decreased function of muscle contraction, increased motor unit action potential of II type fiber, and electrophysiologically. Imaging structure and neuromuscular physiological characteristic can be diagnostic and quantitative analytical techniques for myofascial pain syndrome and a primary factor that reflected in physical therapy intervention.