• 제목/요약/키워드: analytical elasticity solutions

검색결과 62건 처리시간 0.021초

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.773-796
    • /
    • 2014
  • This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Results indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains natural frequency higher than those of traditional discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional one-dimensional functionally graded material. The multidirectional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material. The new results can be used as benchmark solutions for future researches.

Elastic solution of a curved beam made of functionally graded materials with different cross sections

  • Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.659-672
    • /
    • 2015
  • This research deals with the analytical solution of a curved beam with different shapes made of functionally graded materials (FGM's). It was assumed that modulus of elasticity is graded along the thickness direction of curved beam based on a power function. The beam was loaded under pure bending. Using the linear theory of elasticity, the general relation for radial distribution of radial and circumferential stresses of arbitrary cross section was derived. The effect of nonhomogeneity was considered on the radial distribution of circumferential stress. This behavior can be investigated for positive and negative values of nonhomogeneity index. The novelty of this study is application of the obtained results for different combination of material properties and cross sections. Achieved results indicate that employing different nonhomogeneity index and selection of various types of cross sections (rectangular, triangular or circular) can control the distribution of radial and circumferential stresses as designer want and propose new solutions by these options. Increasing the nonhomogeneity index for positive or negative values of nonhomogeneity index and for various cross sections presents different behaviors along the thickness direction. In order to validate the present research, the results of this research can be compared with previous result for reachable cross sections and non homogeneity index.

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • 제4권1호
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates

  • Bendaho, Boudjema;Belabed, Zakaria;Bourada, Mohamed;Benatta, Mohamed Atif;Bourada, Fouad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.277-292
    • /
    • 2019
  • In this present paper, a new two dimensional (2D) and quasi three dimensional (quasi-3D) nonlocal shear deformation theories are formulated for free vibration analysis of size-dependent functionally graded (FG) nanoplates. The developed theories is based on new description of displacement field which includes undetermined integral terms, the issues in using this new proposition are to reduce the number of unknowns and governing equations and exploring the effects of both thickness stretching and size-dependency on free vibration analysis of functionally graded (FG) nanoplates. The nonlocal elasticity theory of Eringen is adopted to study the size effects of FG nanoplates. Governing equations are derived from Hamilton's principle. By using Navier's method, analytical solutions for free vibration analysis are obtained through the results of eigenvalue problem. Several numerical examples are presented and compared with those predicted by other theories, to demonstrate the accuracy and efficiency of developed theories and to investigate the size effects on predicting fundamental frequencies of size-dependent functionally graded (FG) nanoplates.

Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory

  • Bennai, Riadh;Fourn, Hocine;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bessaim, Aicha
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.49-62
    • /
    • 2019
  • In this paper, an analytical analysis for the study of vibratory behavior and wave propagation of functionally graded plates (FGM) is presented based on a high order shear deformation theory. The manufacture of these plates' defects can appear in the form of porosity. This latter can question and modify the global behavior of such plates. A new shape of the distribution of porosity according to the thickness of the plate was used. The field of displacement of this theory is present of indeterminate integral variables. The modulus of elasticity and the mass density of these plates are assumed to vary according to the thickness of the plate. Equations of motion are derived by the principle of minimization of energies. Analytical solutions of free vibration and wave propagation are obtained for FGM plates simply supported by integrating the analytic dispersion relation. Illustrative examples are given also to show the effects of variation of various parameters such as(porosity parameter, material graduation, thickness-length ratio, porosity distribution) on vibration and wave propagation of FGM plates.

Effects of triaxial magnetic field on the anisotropic nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.361-374
    • /
    • 2017
  • In this study, the influences of triaxial magnetic field on the wave propagation behavior of anisotropic nanoplates are studied. In order to include small scale effects, nonlocal strain gradient theory has been implemented. To study the nanoplate as a continuum model, the three-dimensional elasticity theory is adopted in Cartesian coordinate. In our study, all the elastic constants are considered and assumed to be the functions of (x, y, z), so all kind of anisotropic structures such as hexagonal and trigonal materials can be modeled, too. Moreover, all types of functionally graded structures can be investigated. eigenvalue method is employed and analytical solutions for the wave propagation are obtained. To justify our methodology, our results for the wave propagation of isotropic nanoplates are compared with the results available in the literature and great agreement is achieved. Five different types of anisotropic structures are investigated in present paper and then the influences of wave number, material properties, nonlocal and gradient parameter and uniaxial, biaxial and triaxial magnetic field on the wave propagation analysis of anisotropic nanoplates are presented. From the best knowledge of authors, it is the first time that three-dimensional elasticity theory and nonlocal strain gradient theory are used together with no approximation to derive the governing equations. Moreover, up to now, the effects of triaxial magnetic field have not been studied with considering size effects in nanoplates. According to the lack of any common approximations in the displacement field or in elastic constant, present theory has the potential to be used as a bench mark for future works.

복합적층 및 샌드위치판 전단변형함수에 관한 상호비교연구 (Comparison of Various Shear Deformation Functions for Laminated Composite/Sandwich Plates)

  • 박원태;장석윤;천경식
    • 복합신소재구조학회 논문집
    • /
    • 제1권3호
    • /
    • pp.1-9
    • /
    • 2010
  • 본 연구에서는 Lagrangian 및 Hermite 보간함수를 혼합정식화한 유한요소법과 다양한 전단변형함수로 등방성, 대칭 적층 및 샌드위치판 모델을 제시하였다. 제시된 전단변형이론은 판의 상하면에서 전단응력이 0이 되는 다항식, 삼각함수, 쌍곡삼각함수 및 지수함수로 구성되어 있다. 모든 전단변형함수는 해석해, 정해 및 기발표된 유한요소 결과치와 비교하였으며, 합리적인 정확도를 갖는 것으로 예측되었다. 특히, 지수형태의 전단변형함수(Karama et al. 2003; Aydogu 2009)가 적층 및 샌드위치판 해석에 있어서 상대적으로 가장 우수한 결과를 보였다.

  • PDF

The analytical solution for buckling of curved sandwich beams with a transversely flexible core subjected to uniform load

  • Poortabib, A.;Maghsoudi, M.
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.323-349
    • /
    • 2014
  • In this paper, linear buckling analysis of a curved sandwich beam with a flexible core is investigated. Derivation of equations for face sheets is accomplished via the classical theory of curved beam, whereas for the flexible core, the elasticity equations in polar coordinates are implemented. Employing the von-Karman type geometrical non-linearity in strain-displacement relations, nonlinear governing equations are resulted. Linear pre-buckling analysis is performed neglecting the rotation effects in pre-buckling state. Stability equations are concluded based on the adjacent equilibrium criterion. Considering the movable simply supported type of boundary conditions, suitable trigonometric solutions are adopted which satisfy the assumed edge conditions. The critical uniform load of the beam is obtained as a closed-form expression. Numerical results cover the effects of various parameters on the critical buckling load of the curved beam. It is shown that, face thickness, core thickness, core module, fiber angle of faces, stacking sequence of faces and openin angle of the beam all affect greatly on the buckling pressure of the beam and its buckled shape.

Free-edge effect in cross-ply laminated plates under a uniform extension

  • Sheng, Hongyu;Ye, Jianqiao
    • Structural Engineering and Mechanics
    • /
    • 제18권3호
    • /
    • pp.377-388
    • /
    • 2004
  • Based on the basic equations of elasticity, free-edge effects on stresses in cross-ply laminated plates are found by using the state space method. The laminates are subjected to uniaxial-uniform extension plate, which is a typical example of general plane strain problem. The study takes into account material constants of all individual material layers and the state equation of a laminate is solved analytically in the through thickness direction. By this approach, a composite plate may be composed of an arbitrary number of orthotropic layers, each of which may have different material properties and thickness. The solution provides a continuous displacement and inter-laminar stress fields across all material interfaces and an approxiamte prediction to the singularity of stresses occurring in the boundary layer region of a free-edge. Numerical solutions are obtained and compared with the results obtained from an alternative numerical method.

Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix

  • Belmahi, Samir;Zidour, Mohamed;Meradjah, Mustapha;Bensattalah, Tayeb;Dihaj, Ahmed
    • Structural Engineering and Mechanics
    • /
    • 제67권5호
    • /
    • pp.517-525
    • /
    • 2018
  • In this study, we investigate the vibration of single-walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories with account arbitrary boundary conditions effects. A Winkler type elastic foundation is employed to model the interaction of nanobeam and the surrounding elastic medium. Influence of all parameters such as nonlocal small-scale effects, Winkler modulus parameter, vibration mode and aspect ratio of nanobeam on the vibration frequency are analyzed and discussed. The mechanical properties of carbon nanotubes and polymer matrix are treated and an analytical solution is derived using the governing equations of the nonlocal Euler-Bernoulli beam models. Solutions have been compared with those obtained in the literature and The results obtained show that the non-dimensional natural frequency is significantly affected by the small-scale coefficient, the vibrational mode number and the elastic medium.