• Title/Summary/Keyword: analytical and numerical methods

Search Result 395, Processing Time 0.027 seconds

A Rational Ground Model and Analytical Methods for Numerical Analysis of Ground-Penetrating Radar (GPR) (GPR 수치해석을 위한 지반 모형의 합리적인 모델링 기법 및 분석법 제안)

  • Lee, Sang-Yun;Song, Ki-Il;Park, June-Ho;Ryu, Hee-Hwan;Kwon, Tae-Hyuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.49-60
    • /
    • 2024
  • Ground-penetrating radar (GPR) enables rapid data acquisition over extensive areas, but interpreting the obtained data requires specialized knowledge. Numerous studies have utilized numerical analysis methods to examine GPR signal characteristics under various conditions. To develop more realistic numerical models, the heterogeneous nature of the ground, which causes clutter, must be considered. Clutter refers to signals reflected by objects other than the target. The Peplinski material model and fractal techniques can simulate these heterogeneous characteristics, yet there is a shortage of research on the necessary input parameters. Moreover, methods for quantitatively evaluating the similarity between field and analytical data are not well established. In this study, we calculated the autocorrelation coefficient of field data and determined the correlation length using the autocorrelation function. The correlation length represented the temporal or spatial distance over which data exhibited similarity. By comparing the correlation length of field data with that of the numerical model incorporating fractal weights, we quantitatively evaluated a numerical model for heterogeneous ground. Consequently, the results of this study demonstrated a numerical modeling technique that reflected the clutter characteristics of the field through correlation length.

Statistical Analysis of Degradation Data under a Random Coefficient Rate Model (확률계수 열화율 모형하에서 열화자료의 통계적 분석)

  • Seo, Sun-Keun;Lee, Su-Jin;Cho, You-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.3
    • /
    • pp.19-30
    • /
    • 2006
  • For highly reliable products, it is difficult to assess the lifetime of the products with traditional life tests. Accordingly, a recent approach is to observe the performance degradation of product during the test rather than regular failure time. This study compares performances of three methods(i.e. the approximation, analytical and numerical methods) to estimate the parameters and quantiles of the lifetime when the time-to-failure distribution follows Weibull and lognormal distributions under a random coefficient degradation rate model. Numerical experiments are also conducted to investigate the effects of model error such as measurements in a random coefficient model.

Finite element analysis for laterally loaded piles in sloping ground

  • Sawant, Vishwas A.;Shukla, Sanjay Kumar
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.59-78
    • /
    • 2012
  • The available analytical methods of analysis for laterally loaded piles in level ground cannot be directly applied to such piles in sloping ground. With the commercially available software, the simulation of the appropriate field condition is a challenging task, and the results are subjective. Therefore, it becomes essential to understand the process of development of a user-framed numerical formulation, which may be used easily as per the specific site conditions without depending on other indirect methods of analysis as well as on the software. In the present study, a detailed three-dimensional finite element formulation is presented for the analysis of laterally loaded piles in sloping ground developing the 18 node triangular prism elements. An application of the numerical formulation has been illustrated for the pile located at the crest of the slope and for the pile located at some edge distance from the crest. The specific examples show that at any given depth, the displacement and bending moment increase with an increase in slope of the ground, whereas they decrease with increasing edge distance.

Buckling of simply supported thin plate with variable thickness under bi-axial compression using perturbation technique

  • Fan, Haigui;Chen, Zhiping;Wang, Zewu;Liu, Peiqi
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.525-534
    • /
    • 2019
  • An analytical research on buckling of simply supported thin plate with variable thickness under bi-axial compression is presented in this paper. Combining the perturbation technique, Fourier series expansion and Galerkin methods, the linear governing differential equation of the plate with arbitrary thickness variation under bi-axial compression is solved and the analytical expression of the critical buckling load is obtained. Based on that, numerical analysis is carried out for the plates with different thickness variation forms and aspect ratios under different bi-axial compressions. Four different thickness variation forms including linear, parabolic, stepped and trigonometric have been considered in this paper. The calculated critical buckling loads and buckling modes are presented and compared with the published results in the tables and figures. It shows that the analytical expressions derived by the theoretical method in this paper can be effectively used for buckling analysis of simply supported thin plates with arbitrary thickness variation, especially for the stepped thickness that used in engineering widely.

Vibration analysis of plates with curvilinear quadrilateral domains by discrete singular convolution method

  • Civalek, Omer;Ozturk, Baki
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.279-299
    • /
    • 2010
  • A methodology on application of the discrete singular convolution (DSC) technique to the free vibration analysis of thin plates with curvilinear quadrilateral platforms is developed. In the proposed approach, irregular physical domain is transformed into a rectangular domain by using geometric coordinate transformation. The DSC procedures are then applied to discretization of the transformed set of governing equations and boundary conditions. For demonstration of the accuracy and convergence of the method, some numerical examples are provided on plates with different geometry such as elliptic, trapezoidal having straight and parabolic sides, sectorial, annular sectorial, and plates with four curved edges. The results obtained by the DSC method are compared with those obtained by other numerical and analytical methods. The method is suitable for the problem considered due to its generality, simplicity, and potential for further development.

Analytical solutions for crack initiation on floor-strata interface during mining

  • Zhao, Chongbin
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.237-255
    • /
    • 2015
  • From the related engineering principles, analytical solutions for horizontal crack initiation and propagation on a coal panel floor-underlying strata interface due to coal panel excavation are derived in this paper. Two important concepts, namely the critical panel width of horizontal crack initiation on the panel floor-underlying strata interface and the critical panel width of vertical fracture (crack) initiation in the panel floor, have been presented. The resulting analytical solution indicates that: (1) the first criterion can be used to express the condition under which horizontal plane cracks (on the panel floor-underlying strata interface or in the panel floor because of delamination) due to the mining induced vertical stress will initiate and propagate; (2) the second criterion can be used to express the condition under which vertical plane cracks (in the panel floor) due to the mining induced horizontal stress will initiate and propagate; (3) this orthogonal set of horizontal and vertical plane cracks, once formed, will provide the necessary weak network for the flow of gas to inrush into the panel. Two characteristic equations are given to quantitatively estimate both the critical panel width of vertical fracture initiation in the panel floor and the critical panel width of horizontal crack initiation on the interface between the panel floor and its underlying strata. The significance of this study is to provide not only some theoretical bases for understanding the fundamental mechanism of a longwall floor gas inrush problem but also a benchmark solution for verifying any numerical methods that are used to deal with this kind of gas inrush problem.

Mathematical solution for nonlinear vibration equations using variational approach

  • Bayat, M.;Pakar, I.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1311-1327
    • /
    • 2015
  • In this paper, we have applied a new class of approximate analytical methods called Variational Approach (VA) for high nonlinear vibration equations. Three examples have been introduced and discussed. The effects of important parameters on the response of the problems have been considered. Runge-Kutta's algorithm has been used to prepare numerical solutions. The results of variational approach are compared with energy balance method and numerical and exact solutions. It has been established that the method is an easy mathematical tool for solving conservative nonlinear problems. The method doesn't need small perturbation and with only one iteration achieve us to a high accurate solution.

Numerical calculation and experiment of a heaving-buoy wave energy converter with a latching control

  • Kim, Jeongrok;Cho, Il-Hyoung;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Latching control was applied to a Wave Energy Converter (WEC) buoy with direct linear electric Power Take-Off (PTO) systems oscillating in heave direction in waves. The equation of the motion of the WEC buoy in the time-domain is characterized by the wave exciting, hydrostatic, radiation forces and by several damping forces (PTO, brake, and viscous). By applying numerical schemes, such as the semi-analytical and Newmark ${\beta}$ methods, the time series of the heave motion and velocity, and the corresponding extracted power may be obtained. The numerical prediction with the latching control is in accordance with the experimental results from the systematic 1:10-model test in a wave tank at Seoul National University. It was found that the extraction of wave energy may be improved by applying latching control to the WEC, which particularly affects waves longer than the resonant period.

Vibro-acoustic Characteristics of a Disk Brake Rotor with a Narrow Radial Slot (좁은 반경방향 슬롯을 가진 디스크 브레이크 로터의 소음방사 특성)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1133-1143
    • /
    • 2009
  • Vibro-acoustic characteristics of a simplified disk-brake rotor containing a narrow radial slot are studied using a semi-analytical procedure. First, modal sound radiations for flexural and radial modes of a generic annular disk having identical key dimension and slot(with free boundaries) are defined using pre-developed analytical solutions based on the modal vibrations from finite element model. The analytical solutions are validated by fully computational methods. Second, sound radiation from a simplified brake rotor simulated using sound radiation solution of the generic disk based on the rotor eigensolutions computed using a finite element code. Predictions by the semi-analytical method matched well numerical calculations using finite element and boundary element method. Finally, sound radiation and vibration characteristics for the example rotor due to a harmonic excitation fixed to the rotor or rotating around the rotor are also obtained.

Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage

  • Aalianvari, A.
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.671-683
    • /
    • 2017
  • Groundwater control is a significant issue in most underground construction. An estimate of the inflow rate is required to size the pumping system, and treatment plant facilities for construction planning and cost assessment. An estimate of the excavation-induced drawdown of the initial groundwater level is required to evaluate potential environmental impacts. Analytical and empirical methods used in current engineering practice do not adequately account for the effect of the jointed-rock-mass anisotropy and heterogeneity. The impact of geostructural anisotropy of fractured rocks on tunnel inflows is addressed and the limitations of analytical solutions assuming isotropic hydraulic conductivity are discussed. In this paper the unexcavated Zagros tunnel route has been classified from groundwater flow point of view based on the combination of observed water inflow and numerical modeling results. Results show that, in this hard rock tunnel, flow usually concentrates in some areas, and much of the tunnel is dry. So the remaining unexcavated Zagros tunnel route has been categorized into three categories including high Risk, moderately risk and low risk. Results show that around 60 m of tunnel (3%) length can conduit the large amount of water into tunnel and categorized into high risk zone and about 45% of tunnel route has moderately risk. The reason is that, in this tunnel, most of the water flows in rock fractures and fractures typically occur in a clustered pattern rather than in a regular or random pattern.