• Title/Summary/Keyword: analytical and numerical analyses

Search Result 218, Processing Time 0.024 seconds

Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action

  • Ferraioli, Massimiliano
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.253-269
    • /
    • 2019
  • This paper investigates the effects of the tensile catenary action on dynamic increase factor (DIF) in the nonlinear static analysis for progressive collapse of steel-frame buildings. Numerical analyses were performed to verify the accuracy of the empirical and analytical expressions proposed in the literature in cases where the catenary action is activated. For this purpose, nonlinear static and dynamic analyses of a series of steel moment frame buildings with a different number of spans and stories were carried out following the alternate path method. Different column removal scenarios were considered as separate load cases. The dynamic increase factor that approximately compensates for the dynamic effects in the nonlinear static analysis was selected so to match results from the nonlinear dynamic analysis. The study results showed that the many expressions in literature may not work in cases where the catenary stage is fully developed.

An Analytical Study on Bearing Mechanism of Very Soft Ground Covered with Geotextile by Effects of Friction between Ground and Geotextile (토목섬유로 표층 처리된 초연약지반의 지지 메커니즘에 미치는 토목섬유와 지반의 마찰 영향)

  • Ahn, Dong-Han;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.47-55
    • /
    • 2010
  • In general, ground surface strengthening such as using geotextile is needed to secure trafficability of construction equipment. There are many researches for mechanical beha-vior of very soft ground covered with geotextile, however, most of them are under the condition to fix geotextile completely. In this study, numerical analyses were carried out to figure out the effects of restricting conditions of geotextile on bearing mechanism of very soft ground covered with geotextile. In numerical analyses, joint elements were used to figure out the friction properties between ground and geotextile. The results of numerical analyses were compared with the results of model test. In conclusion, the effects of restricting conditions of geotextile on bearing mechanism of very soft ground covered with geotextile became clear.

  • PDF

Tracer Concentration Contours in Grain Lattice and Grain Boundary Diffusion

  • Kim, Yong-Soo;Donald R. Olander
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.7-14
    • /
    • 1997
  • Grain boundary diffusion plays a significant role in fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission produce such as Xe and Kr generated during nuclear fission have to diffuse in the grain lattice and the boundary inside fuel pellets before they reach the open spaces in a fuel rod. These processes can be studied by 'tracer diffusion' techniques, by which grain boundary diffusivity can be estimated and directly used for low burn-up fission gas release analysis. However, only a few models accounting for the both processes are available and mostly handle them numerically due to mathematical complexity. Also the numerical solution has limitations in a practical use. In this paper, an approximate analytical solution in case of stationary grain boundary in a polycrystalline solid is developed for the tracer diffusion techniques. This closed-form solution is compared to available exact and numerical solutions and it turns out that it makes computation not only greatly easier but also more accurate than previous models. It can be applied to theoretical modelings for low bum-up fission gas release phenomena and experimental analyses as well, especially for PIE (post irradiation examination).

  • PDF

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part II: Parametric study and comparison with the Eurocode 4 proposal

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.371-382
    • /
    • 2003
  • This paper analyses the response of rigid and semi-rigid steel-concrete composite joints under monotonic loading. The influence of some important parameters, such as the presence of column web stiffening and the mechanical properties of component materials, is investigated by using a three-dimensional finite element modelling based on the Abaqus code. Numerical and experimental responses of different types of composite joints are also compared with the analytical results obtained using the component approach proposed by Eurocode 4. The results obtained with this approach generally fit well with the numerical and experimental values in terms of strength. Conversely, some significant limits arise when evaluating initial stiffness and non-linear behaviour of the composite joint.

Numerical analyses on the effects of micro pile installation beneath slab tracks (슬래브궤도 하부의 마이크로파일 설치효과 수치해석)

  • Lee Su-Hyung;Kim Dae-Sang;Lee Il-Wha;Chung Choong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.922-927
    • /
    • 2004
  • The bending moment and settlement of the slab track can be reduced by the installation of small numbers of micro piles beneath the track. This paper presents the effect of micro pile installation on the reduction of bending moment and settlement of slab track, estimated by a numerical method. The slab track is modeled as a plate based on the Mindlin's plate theory, and soil and piles are modeled as Winkler and coupled springs, respectively. The stiffness of piles is obtained by the approximate analytical method proposed by Randolph and Wroth. and the modulus of subgrade reaction is adopted to evaluate Winkler spring constant. From the analysis results, the effect of the micro pile installation is significant to considerably reduce the settlement of slab track. However, for the proper reduction of bending moments in a slab track, the pile arrangement should be reasonably taken into account to prevent the stress concentration at pile location.

  • PDF

Analytical Study for dispersed Phase Velocity Information of Love Waves (러브파의 위상속도 분산정보에 관한 해석적 연구)

  • 이일화
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.391-399
    • /
    • 2004
  • This paper investigated the dispersion characteristics of horizontal surface waves as means to apply conversional SASW techniques. To verify this proposal, 3D finite element analysis and Transfer matrix solution were performed. SH wave(Love waves) has the some advantages in comparison with Rayleigh wave. Representatively, Love wave has a characteristics not affected by compression wave. These characteristics have the robust applicability for the surface wave investigation techniques. In this study, for the purpose of employing Love wave in the SASW method, the dispersion characteristics of the Love wave was extensively investigated by the theoretical and numerical approaches. The 3-D finite element and transfer matrix analyses for the half space and two-layer systems were performed to determine the phase velocities from Love wave as well as from both the vertical and the horizontal components of Rayleigh wave. Preliminary, numerical simulations and theoretical solutions indicated that the dispersion characteristics of horizontal surface wave(Love waves) can be sufficiently sensitive and appliable to SASW techniques.

Nonlinear analysis of reinforced concrete frame under lateral load

  • Salihovic, Amir;Ademovic, Naida
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.281-295
    • /
    • 2018
  • This study aims to investigate the capacity of different models to reproduce the nonlinear behavior of reinforced concrete framed structures. To accomplish this goal, a combined experimental and analytical research program was carried out on a large scaled reinforced concrete frame. Analyses were performed by SAP2000 and compared to experimental and VecTor2 results. Models made in SAP2000 differ in the simulation of the plasticity and the type of the frame elements used to discretize the frame structure. The results obtained allow a better understanding of the characteristics of all numerical models, helping the users to choose the best approach to perform nonlinear analysis.

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

Nonlinear analysis of reinforced concrete frame under lateral load

  • Salihovic, Amir;Ademovic, Naida
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.523-537
    • /
    • 2017
  • This study aims to investigate the capacity of different models to reproduce the nonlinear behavior of reinforced concrete framed structures. To accomplish this goal, a combined experimental and analytical research program was carried out on a large scaled reinforced concrete frame. Analyses were performed by SAP2000 and compared to experimental and VecTor2 results. Models made in SAP2000 differ in the simulation of the plasticity and the type of the frame elements used to discretize the frame structure. The results obtained allow a better understanding of the characteristics of all numerical models, helping the users to choose the best approach to perform nonlinear analysis.

A new methodology of the development of seismic fragility curves

  • Lee, Young-Joo;Moon, Do-Soo
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.847-867
    • /
    • 2014
  • There are continuous efforts to mitigate structural losses from earthquakes and manage risk through seismic risk assessment; seismic fragility curves are widely accepted as an essential tool of such efforts. Seismic fragility curves can be classified into four groups based on how they are derived: empirical, judgmental, analytical, and hybrid. Analytical fragility curves are the most widely used and can be further categorized into two subgroups, depending on whether an analytical function or simulation method is used. Although both methods have shown decent performances for many seismic fragility problems, they often oversimplify the given problems in reliability or structural analyses owing to their built-in assumptions. In this paper, a new method is proposed for the development of seismic fragility curves. Integration with sophisticated software packages for reliability analysis (FERUM) and structural analysis (ZEUS-NL) allows the new method to obtain more accurate seismic fragility curves for less computational cost. Because the proposed method performs reliability analysis using the first-order reliability method, it provides component probabilities as well as useful byproducts and allows further fragility analysis at the system level. The new method was applied to a numerical example of a 2D frame structure, and the results were compared with those by Monte Carlo simulation. The method was found to generate seismic fragility curves more accurately and efficiently. Also, the effect of system reliability analysis on the development of seismic fragility curves was investigated using the given numerical example and its necessity was discussed.