• Title/Summary/Keyword: analysis on the operating condition

Search Result 772, Processing Time 0.027 seconds

Analysis on the Rotor Losses in High-Speed Permanent Magnet Synchronous Motor Considering the Operating Condition (운전조건을 고려한 고속 영구자석형 동기전동기의 회전자 손실 해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.48-56
    • /
    • 2007
  • In this paper, the rotor losses in high-speed permanent synchronous motor (PMSM) considering the operating condition are discussed. In order to maintain the mechanical integrity of a high-speed permanent magnet machine rotor intended for high-speed operation, the rotor assembly is often retained within a stainless steel or Carbon-Fiber/Epoxy sleeve. The sleeve is exposed to fields produced by the stator from either the slotting or the mmf harmonics that are not synchronous with rotor losses. On the basis of analytical field analysis, the rotor losses are analyzed. In particular, the no-load, rated with air-cooled, and forced water cooled conditions are considered. The results are validated extensively by comparison with non-linear finite element method (FEM).

Cavitation Characteristics of a Pump-turbine Model by CFD Analysis

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.49-55
    • /
    • 2015
  • The pumped storage plant operates with quick change of the discharge as well as quick changes between pump mode and turbine mode. This study focuses on the cavitation analysis of a pump-turbine model because in turbo-machinery, cavitation can reduce the performance and shorten service life. The pump-turbine model system consists of 7 blades, 20 stay vanes (including tongue) and 20 guide vanes. This study adopts the Rayleigh-Plesset model as a cavitation model, which illustrates cavitation by using the air volume fraction method. The pump mode and turbine mode at the operating condition of partial loading, normal and excessive loading are analyzed to investigate the cavitation performance of the pump-turbine. It was observed that this pump-turbine design showed very good cavitation characteristics with no cavitation bubbles in all operating conditions. Overall value of air volume fraction of both mode at different operating condition are lower than 1, which confirms low possibility of cavitation occurrence at current situation.

Development of Virtual Prototype for Separator Winding and Inserting Machine of Battery Assembly Line (건전지 세퍼레이터 와인딩 및 삽입시스템의 Virtual Prototype 개발)

  • 정상화;차경래;신병수;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.727-730
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed far each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Virtual Engineering of the separator inserting machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF

Study on Analysis of Driving Torque and Reduction for Naval Surveillance Radar Antenna (함정용 탐색레이더 안테나의 구동 토크 분석 및 감쇄에 대한 연구)

  • Kim, Seung-Woo;Yang, Yun-Suk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.388-395
    • /
    • 2009
  • Surveillance Radar System for naval vessels is a primary core sensor for command and fire control, and provides CFCS(Command and Fire Control System) information for 3-D surveillance and fire control. It's composed of Antenna, Transmitter/Receiver, Signal Processor, and Air drier, which are installed on and under deck. They should be designed and produced in order to endure at any operating circumstances. This paper analyzes load of a driving part for driving the antenna considering factors under external operating circumstances, and proposes a condition of load for maintaining fixed RPM through analyzing internal load of the driving part, and how to reduce the load to meet the condition. This paper is verified through experimental studies.

Experimental Study on Added Resistance of VLCC for Ship's Operating Condition in Waves

  • Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.240-245
    • /
    • 2015
  • In this study, experiments were performed using a model of a very large crude oil carrier (VLCC), which is a typical blunt ship, in a wave-making towing tank. The aim of the experiments was to determine the effect of added resistance in waves on the various operating conditions of a VLCC. An analysis of the results was conducted to determine the characteristics of resistance performance in waves. In addition, the characteristics of added resistance on a tanker were analyzed under irregular waves based upon the above result. The experimental results showed that added resistance was the highest around ${\lambda}/L=1.0$, and the added resistance increased with the increase of the ship speed. Furthermore, under even keel conditions, the added resistance was higher than that under the trim changes, and the smallest added resistance was measured at the trim by the stern. Based on the experimental results, this study proposes effective operating conditions by analyzing the characteristics of the mean added resistance and the expected extreme response in irregular waves.

A Study on Heat Transport Phenomena in Fuel Cell Stack for the Performance Analysis of Phosphoric Acid Fuel Cell (인산형 연료전지의 성능해석을 위한 스택내의 열전달 현상에 관한 연구)

  • Moon, Duk-Yong;Gu, Ja-Yong;Seo, Jong-Chul;Kim, Yu
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.160-164
    • /
    • 1991
  • The effect of various parameters, such as temperature, current density and operating valtage on the performance of phosphoric acid fuel cell stack was studied by using numerical analysis. The utilization ratio of reaction gas, inlet condition of reaction air and cooling air, inlet condition of cooling air flow latin were changed regularly, The results showed good agreements with the existing results and experimental ones.

  • PDF

Effective Algorithm in Steady-State Analysis for Variable-Speed and Constant-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper, the steady-state operating performance analysis for the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) in addition to a constant-speed prime mover (CSPM) is presented on the basis of an effective algorithm based on its frequency-domain equivalent circuit. The operating characteristics of the three-phase SEIG coupled by a VSPM and/or a CSPM are evaluated on line processing under the condition of the electrical passive load parameters variations with simple and efficient computation processing procedure in unregulated voltage control loop scheme. A three-phase SEIG prototype setup with a VSPM as well as a CSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental operating characteristic results are illustrated and give good agreements with the simulation ones.

Thermal Stress Analysis for Life Prediction of Power Plant Turbine Rotor (발전용 터빈 로우터의 수명예측을 위한 열응력 해석)

  • 임종순;허승진;이규봉;유영면
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.276-287
    • /
    • 1990
  • In this paper research result of transient thermal stress analysis of power plant turbine rotors for life prediction under severs operating conditions is presented. Galerkin's recurrence scheme is used for numerical solution of discretized FEM equation of transient heat conduction equation. Boundary conditions for the equation and operating conditions are intensively investigated for accurate life prediction of turbine rotors in operation. A computer program for on-site application is developed and tested. Distribution of thermal stress in turbine rotors during various operating condition is analyzed with the program and it is found that the peak thermal stress appears during cold stage conditions at the first stage of high pressure rotors.

A New Optimal Design Method of the Electronic Ballast for MHL with Stable Run-up Current (시동전류 제한을 통한 메탈헬라이드 램프용 안정기의 최적 설계)

  • Lim, Byoung-Loh;Jang, Mog-Soon;Lim, Ki-Seung;Park, Chong-Yeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.409-415
    • /
    • 2008
  • This paper proposed a new optimal design method of the electronic ballast with stable run-up current for Metal Halide lamp during the ignition condition. In order to avoid operation in the acoustic resonance frequency band and to supply the optimal ignition current without demage of inverter switching components during the ignition period, the values of the series inductor Ls, the series capacitor Cs, and the parallel capacitor Cp were determined by analysis of characteristics of inverter transfer function depend on Lamp operating power and resistance of ignition condition and steady state operating condition. For the prototype ballast for a 400W Metal Halide Lamp, experimental results are presented in order to validate the proposed method.

The Implementation of Probabilistic Security Analysis in Composite Power System Reliability (복합전력계통 신뢰도평가의 확률론적 안전도 도입)

  • Cha, Jun-Min;Kwon, Sae-Hyuk;Kim, Hyung-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.5
    • /
    • pp.185-190
    • /
    • 2006
  • The security analysis relates to the ability of the electric systems to survive sudden disturbances such as electric short circuits or unanticipated loss of system elements. It is composed of both steady state and dynamic security analyses, which are not two separate issues but should be considered together. In steady state security analysis including voltage security analysis, the analysis checks that the system is operated within security limits by OPF (optimal power flow) after the transition of a new operating point. On the other hand, dynamic security analysis deals that the transition will lead to an acceptable operating condition. Transient stability, which is the ability of power systems to maintain synchronism when subjected to a large disturbance, is a principal component in dynamic security analysis. Usually any loss of synchronism will cause additional outages. They make the present steady state analysis of the post-contingency condition inadequate for unstable cases. This is the reason of the need for dynamics of systems. Probabilistic criterion can be used to recognize the probabilistic nature of system components and shows the possibility of system security. A comprehensive conceptual framework for probabilistic static and dynamic assessment is presented in this paper. The simulation results of the Western System Coordinating Council (WSCC) system compare an analytical method with Monte-Carlo simulation (MCS). Also, a case study of the extended IEEE Reliability Test System (RTS) shows the efficiency of this approach.