• Title/Summary/Keyword: analysis of vehicle-bridge coupled vibration

Search Result 13, Processing Time 0.016 seconds

Vibration analysis of a uniform beam traversed by a moving vehicle with random mass and random velocity

  • Chang, T.P.;Liu, M.F.;O, H.W.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.737-749
    • /
    • 2009
  • The problem of estimating the dynamic response of a distributed parameter system excited by a moving vehicle with random initial velocity and random vehicle body mass is investigated. By adopting the Galerkin's method and modal analysis, a set of approximate governing equations of motion possessing time-dependent uncertain coefficients and forcing function is obtained, and then the dynamic response of the coupled system can be calculated in deterministic sense. The statistical characteristics of the responses of the system are computed by using improved perturbation approach with respect to mean value. This method is simple and useful to gather the stochastic structural response due to the vehicle-passenger-bridge interaction. Furthermore, some of the statistical numerical results calculated from the perturbation technique are checked by Monte Carlo simulation.

Experimental and numerical studies of aerodynamic forces on vehicles and bridges

  • Han, Yan;Hu, Jiexuan;Cai, C.S.;Chen, Zhengqing;Li, Chunguang
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.163-184
    • /
    • 2013
  • An accurate identification of the aerodynamic characteristics of vehicles and the bridge is the premise for the coupled vibration analysis of a wind-vehicle-bridge system. At present, the interaction of aerodynamic forces between the road vehicles and bridge is ignored in most previous studies. In the present study, an experimental setup was developed to measure the aerodynamic characteristics of vehicles and the bridge for different cases in a wind tunnel considering the aerodynamic interference. The influence of the wind turbulence, the wind speed, the vehicle interference, and the vehicle position on the aerodynamic coefficients of vehicles, and the influence of vehicles on the static coefficients of the bridge were investigated, based on the experimental results. The variations in the aerodynamic characteristics of vehicles and the bridge were studied and the measured results were validated according to the results of surface pressure measurements on the vehicle and the bridge. The measured results were further validated by comparing the measured results with values derived numerically. The measured results showed that the wind turbulence, the vehicle interference, and the vehicle position significantly affected the aerodynamic coefficients of vehicles. However, the influence of the wind speed on the aerodynamic coefficients of the studied vehicle is small. The static coefficients of the bridge were also significantly influenced by the presence of vehicles.

A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses

  • Nikkhoo, Ali;Asili, Soheil;Sadigh, Shabnam;Hajirasouliha, Iman;Karegar, Hossein
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.307-326
    • /
    • 2019
  • A low computational cost semi-analytical method is developed, based on eigenfunction expansion, to study the vibration of rectangular plates subjected to a series of moving sprung masses, representing a bridge deck under multiple vehicle or train moving loads. The dynamic effects of the suspension system are taken into account by using flexible connections between the moving masses and the base structure. The accuracy of the proposed method in predicting the dynamic response of a rectangular plate subjected to a series of moving sprung masses is demonstrated compared to the conventional rigid moving mass models. It is shown that the proposed method can considerably improve the computational efficiency of the conventional methods by eliminating a large number of time-varying components in the coupled Ordinary Differential Equations (ODEs) matrices. The dynamic behaviour of the system is then investigated by performing a comprehensive parametric study on the Dynamic Amplification Factor (DAF) of the moving loads using different design parameters. The results indicate that ignoring the flexibility of the suspension system in both moving force and moving mass models may lead to substantially underestimated DAF predictions and therefore unsafe design solutions. This highlights the significance of taking into account the stiffness of the suspension system for accurate estimation of the plate maximum dynamic response in practical applications.