• Title/Summary/Keyword: analysis of accident

Search Result 3,916, Processing Time 0.031 seconds

Analysis of High Burnup Fuel Behavior Under Rod Ejection Accident in the Westinghouse-Designed 950 MWe PWR

  • Chan Bock Lee;Byung Oh Cho
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.273-286
    • /
    • 1998
  • As there has arisen a concern that failure of the high burnup fuel under the reactivity-insertion accident(RIA) may occur at the energy lower than the expected, fuel behavior under the rod ejection accident in a typical Westinghouse-designed 950 MWe PWR was analyzed by using the three dimensional nodal transient neutronics code, PANBOX2 and the transient fuel rod performance analysis code, FRAP-T6. Fuel failure criteria versus the burnup was conservatively derived taking into account available test data and the possible fuel failure mechanisms. The high burnup and longer cycle length fuel loading scheme of a peak rod turnup of 68 MWD/kgU was selected for the analysis. Except three dimensional core neutronics calculation, the analysis used the same core conditions and assumptions as the conventional zero dimensional analysis. Results of three dimensional analysis showed that the peak fuel enthalpy during the rod ejection accident is less than one third of that calculated by the conventional zero dimensional analysis methodology and the fraction of fuel failure in the core is less than 4 %. Therefore, it can be said that the current design limit of less than 10 percent fuel failure and maintaining the core coolable geometry would be adequately satisfied under the rod ejection accident, even though the conservative fuel failure criteria derived from the test data are applied.

  • PDF

Application of Dynamic Probabilistic Safety Assessment Approach for Accident Sequence Precursor Analysis: Case Study for Steam Generator Tube Rupture

  • Lee, Hansul;Kim, Taewan;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.306-312
    • /
    • 2017
  • The purpose of this research is to introduce the technical standard of accident sequence precursor (ASP) analysis, and to propose a case study using the dynamic-probabilistic safety assessment (D-PSA) approach. The D-PSA approach can aid in the determination of high-risk/low-frequency accident scenarios from all potential scenarios. It can also be used to investigate the dynamic interaction between the physical state and the actions of the operator in an accident situation for risk quantification. This approach lends significant potential for safety analysis. Furthermore, the D-PSA approach provides a more realistic risk assessment by minimizing assumptions used in the conventional PSA model so-called the static-PSA model, which are relatively static in comparison. We performed risk quantification of a steam generator tube rupture (SGTR) accident using the dynamic event tree (DET) methodology, which is the most widely used methodology in D-PSA. The risk quantification results of D-PSA and S-PSA are compared and evaluated. Suggestions and recommendations for using D-PSA are described in order to provide a technical perspective.

Analysis of a Fire Accident during a Batch Reactor Cleaning with AcciMap, STAMP and FRAM (AcciMap, STAMP, FRAM을 이용한 반응기 세척 작업 중 화재 사고 분석)

  • Seo, Dong-Hyun;Bae, Gye wan;Choi, Yi-Rac;Han, Ou-Sup
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.62-70
    • /
    • 2021
  • Representative systematic accident analysis methods proposed so far include AcciMap, STAMP, and FRAM. This study used these three techniques to analyze a fire accident case that occurred during routine manufacturing work in a domestic chemical plant and compared the results. The methods used different approaches to identify the cause of the accident, but they all highlighted similar causal factors. In addition to technical issues, the three accident analysis methods identified factors related to safety education, risk assessment, and the operation of the process safety management system, as well as management philosophy and company culture as problems. The AcciMap and STAMP models play complementary roles because they use hierarchical structures, while FRAM is more effective in analyses centered on human and organizational functions than in technical analyses.

A Study on Prevention Measure Establishment through Cause Analysis of Chemical-Accidents (화학사고 원인분석을 통한 예방대책 수립에 관한 연구)

  • Lee, Hyung-Sub;Yim, Ji-Pyo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.21-27
    • /
    • 2017
  • Even if several chemical accident prevention systems such as PSM(Process Safety Management), RMP(Risk Management Plan), etc. have been carried out, many chemical accidents have still occurred at industrial plants in Korea. We describe the status of chemical industry and the trend of occurrence of chemical accidents in Korea. And this paper analyzes the recent chemical accidents in eight ways. These ways include chemical accident forms, ignition sources, sources of chemical equipment, human vs equipment/material causes, worker's working situation, employee scale, hazardous substances, week & time, fatalities of manufacture & contractor's workers. Finally we proposes the four representative prevention measures brought to result of cause analysis by accident statistics.

Cause Analyses of Boiler Accident and Their Counter-plans Based on Accident Cases (사고사례에 기초한 보일러 사고의 원인분석 및 대책)

  • 윤상권;장통일;임현교
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.131-140
    • /
    • 2003
  • An accident involving a boiler can result in a disaster since it handles high-pressurized steam so that it may cause an explosion. Therefore, the boiler is very susceptible to industrial accidents. This thesis aimed to develop counter-plans to prevent industrial accidents involved the boiler. At first after collecting accident cases involving boilers, a survey on the trait of them was carried out. Ant on the other hand a qualitative analysis was conducted to draw out hazardous components in the boiler itself and their inherent relative importance was assessed. Through this procedure, 'negligence of unsafe condition' was noted as the major cause for unsafe acts whereas 'fault in work procedure' for unsafe condition. In the meanwhile, results of a hazard analysis using FMEA technique ranked gas safety devices, a switch preventing gas from under-pressurization, protect relays high. In particular, it was pointed out that the water feeding and steam subsystem has more components in hazard than other subsystems. Considering these analyses results, counter-plans to improve safety management was suggested also.

Occupational Dose Analysis of Spent Resin Handling Accident During NPP Decommissioning

  • Hyunjin Lee;Chang-Lak Kim;Sang-Rae Moon;Sun-Kee Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.247-253
    • /
    • 2023
  • According to NSSC Notice No. 2021-10, safety analysis needs to be introduced in the decommissioning plan. Public and occupational dose analyses should be conducted, specifically for unexpected radiological accidents. Herein, based on the risk matrix and analytic hierarchy process, the method of selecting accident scenarios during the decommissioning of nuclear power plants has been proposed. During decommissioning, the generated spent resin exhibits relatively higher activity than other generated wastes. When accidents occur, the release fraction varies depending on the conditioning method of radioactive waste and type of radioactive nuclides or accidents. Occupational dose analyses for 2 (fire and drop) among 11 accident scenarios have been performed. The radiation doses of the additional exposures caused by the fire and drop accidents are 1.67 and 4.77 mSv, respectively.

Data mining approach for identifying factors impacting construction accident costs: from indirect expenses perspectives

  • Ayesha Munira CHOWDHURY;Eun-Ju HA;Jae-ho CHOI
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.319-326
    • /
    • 2024
  • Construction projects account for a significant proportion of workplace hazards globally. While construction cost reports typically emphasize direct accident costs such as treatment expenses, nursing care costs, or disability benefits, indirect factors like work interruption loss costs or consolation costs are frequently overlooked, because it is relatively difficult to estimate those factors in advance. Recognizing and accurately estimating the indirect costs factors associated with construction accidents would not only shed light on the monetary impact these incidents have on overall project costs but also would enable to estimate the total accident cost in advance. The current study seeks to identify factors influencing indirect costs, which ultimately govern the total accident cost, through a data mining approach. A survey was conducted in domestic construction companies, resulting in a dataset of 1038 accident records collected from construction sites. First, statistical analysis was performed to uncover characteristics and patterns of factors affecting construction accident costs from both direct and indirect perspectives. Later, this study proposes four distinct machine learning (ML) models, comparing their performances in predicting the total accident cost (including indirect costs) in advance. Additionally, this research sheds light on an important issue in construction data analysis, which is the scarcity of data in a particular class, by applying random oversampling and random undersampling techniques. The suggested framework can assist practitioners and management in estimating construction accident costs and identifying the relevant attributes that impact accidents at the construction site for future practices.

Fundamental Research on the Development of a Risk Based Decision Support System for Maritime Accident Response: Focused on Oil Tanker Grounding (위험도기반 해양사고 초기대응 지원 시스템 개발 기초연구: 유조선 좌초사고를 중심으로)

  • Na, Seong;Lee, Seung-Hyun;Choi, Hyuek-Jin
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.391-400
    • /
    • 2016
  • A number of maritime accidents, and accident response activities, including the command and control procedures that were implemented at accident scenes, are analyzed to derive useful information about responding to maritime accidents, and to understand how the chain of events developed after the initial accident. In this research, a new concept of a 'risk based accident response support system' is proposed. In order to identify the event chains and associated hazards related to the accident response activities, this study proposes a 'Brainstorming technique for scenario identification', based on the concept of the HAZID technique. A modified version of Event Tree Analysis was used for quantitative risk analysis of maritime accident response activities. PERT/CPM was used to analyze accident response activities and for calculating overall (expected) response activity completion time. Also, the risk based accident response support system proposed in this paper is explained using a simple case study of risk analysis for oil tanker grounding accident response.

The Prediction of Industrial Accident Rate in Korea: A Time Series Analysis (시계열분석을 통한 산업재해율 예측)

  • Choi, Eunsuk;Jeon, Gyeong-Suk;Lee, Won Kee;Kim, Young Sun
    • Korean Journal of Occupational Health Nursing
    • /
    • v.25 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • Purpose: The purpose of this study is to predict industrial accident rate using time series analysis. Methods: The rates of industrial accident and occupational injury death were analyzed using industrial accident statistics analysis system of the Korea Occupational Safety and Health Agency from 2001 to 2014. Time series analysis was done using the most recent data, such as raw materials of Economically Active Population Survey, Economic Statistics System of the Bank of Korea, and e-National indicators. The best-fit model with time series analysis to predict occupational injury was developed by identifying predictors when the value of Akaike Information Criteria was the lowest point. Variables into the model were selected through a series of expertises' consultations and literature review, which consisted of socioeconomic structure, labor force structure, working conditions, and occupational accidents. Results: Indexes at the meso- and macro-levels predicting well occurrence of occupational accidents and occupational injury death were labor force participation rate for ages 45-49 and budget for small scaled workplace support. The rates of industrial accident and occupational injury death are expected to decline. Conclusion: For reducing industrial accident continuously, we call for safe employment policy of economically active middle aged adults and support for improving safety work environment of small sized workplace.

A FRAM-based Systemic Investigation of a Rail Accident Involving Human Errors (인적오류가 관여된 철도 사고의 체계적 분석을 위한 FRAM의 활용)

  • Choi, Eun-Bi;Ham, Dong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • There has been a significant decline in the number of rail accidents in Korea since system safety management activities were introduced. Nonetheless, analyzing and preventing human error-related accidents is still an important issue in railway industry. As a railway system is increasingly automated and intelligent, the mechanism and process of an accident occurrence are more and more complicated. It is now essential to consider a variety of factors and their intricate interactions in the analysis of rail accidents. However, it has proved that traditional accident models and methods based on a linear cause-effect relationship are inadequate to analyze and to assess accidents in complex systems such as railway systems. In order to supplement the limitations of traditional safety methods, recently some systemic safety models and methods have been developed. Of those, FRAM(Functional Resonance Analysis Method) has been recognized as one of the most useful methods for analyzing accidents in complex systems. It reflects the concepts of performance adjustment and performance variability in a system, which are fundamental to understanding the processes of an accident in complex systems. This study aims to apply FRAM to the analysis of a rail accident involving human errors, which occurred recently in South Korea. Through the application of FRAM, we found that it can be a useful alternative to traditional methods in the analysis and assessment of accidents in complex systems. In addition, it was also found that FRAM can help analysts understand the interactions between functional elements of a system in a systematic manner.