• Title/Summary/Keyword: analysis and computation

Search Result 2,216, Processing Time 0.037 seconds

Efficiency of a Symbolic Computation Method for the Real Time Simulation (실시간 시뮬레이션을 위한 기호연산기법의 유용성 검증에 관한 연구)

  • Choe, Dae-Han;Yu, Wan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1878-1884
    • /
    • 2000
  • In multibody dynamic analysis, one of the most important problems is to reduce computation times for real time simulation. In this paper, a symbolic computation method is implemented and tested for each dynamic analysis step. Applying symbolic formulations to the vehicle dynamics program AutoDyn7, the effectiveness of the symbolic computation method is verified.

Analysis of the performances of the CFD schemes used for coupling computation

  • Chen, Guangliang;Jiang, Hongwei;Kang, Huilun;Ma, Rui;Li, Lei;Yu, Yang;Li, Xiaochang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2162-2173
    • /
    • 2021
  • In this paper, the coupling of fine-mesh computational fluid dynamics (CFD) thermal-hydraulics (TH) code and neutronics code is achieved using the Ansys Fluent User Defined Function (UDF) for code development, including parallel meshing mapping, data computation, and data transfer. Also, some CFD schemes are designed for mesh mapping and data transfer to guarantee physical conservation in the coupling computation. Because there is no rigorous research that gives robust guidance on the various CFD schemes that must be obtained before the fine-mesh coupling computation, this work presents a quantitative analysis of the CFD meshing and mapping schemes to improve the accuracy of the value and location of key physical prediction. Furthermore, the effect of the sub-pin scale coupling computation is also studied. It is observed that even the pin-resolved coupling computation can also create a large deviation in the maximum value and spatial locations, which also proves the significance of the research on mesh mapping and data transfer for CFD code in a coupling computation.

A Study on the Time Required and Error Tolerance Limits for Flight Data Computation (비행자료산출을 위한 소요시간과 정답오차범위에 관한 연구)

  • Kim, Chil-Young;Han, Kyoung-Keun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • The purpose of the present paper is to determine the time required and error tolerance limits for flight data computation. The results of statistical analysis showed that the calculator side computation required about 50 seconds for each question and wind side computation needed about 115 seconds for each question. In case of error tolerance limits, it was found that the error tolerance limit for altitude computation war 90 feet and two knots of interval was recommanded for the speed computation in calculator side, and one degree of interval for heading computation and five knots interval for speed computation in wind side.

  • PDF

Transient Response Analysis of Frame Structures Using the Finite Element-transfer Stiffness Coefficient Method (FE-TSCM) (유한요소-전달강성계수법을 이용한 골조 구조물의 과도응답해석)

  • 최명수;문덕홍;김성진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.674-684
    • /
    • 2002
  • In order to decrease remarkably the computation time and storage used in the direct integration method without the loss of accuracy, authors suggest a new transient analysis algorithm. This algorithm is derived from the combination of three techniques, that is, the transfer technique of the transfer stiffness coefficient method, the modeling technique of the finite element method, and the numerical integration technique of the Newmark method. In this paper, the transient analysis algorithm of a frame structure is formulated by the proposed method. The accuracy and computation efficiency of the proposed method are demonstrated through the comparing with the computation results by the direct integration method for three computation models under various excitations.

A Fast Computation Method of Power Ground Plane Impedance using the Mobius Transform (Mobius변환을 이용한 전력접지층 임피던스의 빠른 계산방법)

  • Suh Youngsuk;Kim In-Sung;Song Jae-Sung;Eum Tae-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.1
    • /
    • pp.41-44
    • /
    • 2005
  • A new method to reduce the computation time in power/ground-plane analysis is proposed. The existing method using the two dimensional infinite series summation take a lot of computation time. The proposed method is based on the approximation of impedance in the frequency domain through the Mobius transform. This method shows the good accuracy and the high speed in computing. In the case of impedance calculation for 9'x4' board, the proposed method takes 0.16 second of computing time whereas the existing method takes 2.2 second. This method can be applied to the analysis and design of power/ground-plane that need a lot of computation steps.

An efficient method for computation of unbalance responses of rotor-bearing systems (회전체 베어링계의 불균형 응답을 위한 효율적인 계산 방법)

  • Hong, Seong-Wook;Park, Jong-Heuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.137-147
    • /
    • 1995
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor-bearing systems. Local bearing parameters in rotor-bearing systems are the major sources which give rise to a difficulty in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and anisotropy. In the present paper, an efficient method for unbalance responses is proposed so as to easily take into account bearing parameters in computation. An exact matrix condensation procedure is proposed which enables the present method to compute unbalance responses by dealing with condensed, small matrices. The proposed method causes no errors even though the computation procedure is based on the small matrices condensed from the full matrices. The present method is illustrated through a numerical example and compared with the conventional method.

  • PDF

Analysis of Three-dimensional Nonaxisymmetric Spin-up by Using Parallel Computation (병렬계산에 의한 비축대칭 3차원 스핀업 유동해석)

  • Park, Jae-Hyoun;Choi, Yoon-Hwan;Suh, Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.512-517
    • /
    • 2001
  • In this study, spin-up flows in a rectangular container are analysed by using three-dimensional computation. In the numerical computation, we use the parallel computer system of PC-cluster type. We compared our results with those obtained by two-dimensional computation. Effect of velocity and vorticity on the flow is studied. The result shows that two-dimensional solution is in good agreement with the 3-D result. Attention is given to the region where the 3-D flow is significant.

  • PDF

DEVELOPMENT OF A CORE THERMO-FLUID ANALYSIS CODE FOR PRISMATIC GAS COOLED REACTORS

  • Tak, Nam-Il;Lee, Sung Nam;Kim, Min-Hwan;Lim, Hong Sik;Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.641-654
    • /
    • 2014
  • A new computer code, named CORONA (Core Reliable Optimization and thermo-fluid Network Analysis), was developed for the core thermo-fluid analysis of a prismatic gas cooled reactor. The CORONA code is targeted for whole-core thermo-fluid analysis of a prismatic gas cooled reactor, with fast computation and reasonable accuracy. In order to achieve this target, the development of CORONA focused on (1) an efficient numerical method, (2) efficient grid generation, and (3) parallel computation. The key idea for the efficient numerical method of CORONA is to solve a three-dimensional solid heat conduction equation combined with one-dimensional fluid flow network equations. The typical difficulties in generating computational grids for a whole core analysis were overcome by using a basic unit cell concept. A fast calculation was finally achieved by a block-wise parallel computation method. The objective of the present paper is to summarize the motivation and strategy, numerical approaches, verification and validation, parallel computation, and perspective of the CORONA code.

Boltzmann machine using Stochastic Computation (확률 연산을 이용한 볼츠만 머신)

  • 이일완;채수익
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.159-168
    • /
    • 1994
  • Stochastic computation is adopted to reduce the silicon area of the multipliers in implementing neural network in VLSI. In addition to this advantage, the stochastic computation has inherent random errors which is required for implementing Boltzmann machine. This random noise is useful for the simulated annealing which is employed to achieve the global minimum for the Boltzmann Machine. In this paper, we propose a method to implement the Boltzmann machine with stochastic computation and discuss the addition problem in stochastic computation and its simulated annealing in detail. According to this analysis Boltzmann machine using stochastic computation is suitable for the pattern recognition/completion problems. We have verified these results through the simulations for XOR, full adder and digit recognition problems, which are typical of the pattern recognition/completion problems.

  • PDF

A Study on the Structural Analysis for Plastic Door Handle of Automobile (플라스틱 자동차 손잡이 구조물의 구조해석에 관한 연구)

  • Park, S.R.;Shim, D.C.;Kim, D.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.185-190
    • /
    • 2010
  • Application of CAE analyses are wide spread in shaping processes and structural safety verification of plastic products. The importance of CAE analysis and its contributions are getting increase since the processibility and structural safety of product can be predicted. CAE analysis for complex shaped product need a lot of time for modeling and computation compare with simpler one. Therefore careful simulation modeling is required for complex shaped product. Structural analysis for plastic door handle of automobile has been performed and structural safety has been investigated for various load directions and modeling cases. Large stress occurred at the hinge in handle regardless of load direction and modeling case. Consequently hinge is considered structurally very weak among the parts in plastic door handle. It is concluded that simple modeling rather than total modeling with adequate boundary condition equivalent to real situation gives reasonable computational results with saving modeling effort and computation time.