• 제목/요약/키워드: analogue of Wiener space

검색결과 29건 처리시간 0.025초

ANALOGUE OF WIENER INTEGRAL IN THE SPACE OF SEQUENCES OF REAL NUMBERS

  • Ryu, Kun Sik
    • 충청수학회지
    • /
    • 제25권1호
    • /
    • pp.65-72
    • /
    • 2012
  • Let T > 0 be given. Let $(C[0,T],m_{\varphi})$ be the analogue of Wiener measure space, associated with the Borel proba-bility measure ${\varphi}$ on ${\mathbb{R}}$, let $(L_{2}[0,T],\tilde{\omega})$ be the centered Gaussian measure space with the correlation operator $(-\frac{d^{2}}{dx^{2}})^{-1}$ and ${\el}_2,\;\tilde{m}$ be the abstract Wiener measure space. Let U be the space of all sequence $<c_{n}>$ in ${\el}_{2}$ such that the limit $lim_{{m}{\rightarrow}\infty}\;\frac{1}{m+1}\;\sum{^{m}}{_{n=0}}\;\sum_{k=0}^{n}\;c_{k}\;cos\;\frac{k{\pi}t}{T}$ converges uniformly on [0,T] and give a set function m such that for any Borel subset G of $\el_2$, $m(\mathcal{U}\cap\;P_{0}^{-1}\;o\;P_{0}(G))\;=\tilde{m}(P_{0}^{-1}\;o\;P_{0}(G))$. The goal of this note is to study the relationship among the measures $m_{\varphi},\;\tilde{\omega},\;\tilde{m}$ and $m$.

A CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT WITH CHANGE OF SCALES ON A FUNCTION SPACE I

  • Cho, Dong Hyun
    • 대한수학회보
    • /
    • 제54권2호
    • /
    • pp.687-704
    • /
    • 2017
  • Using a simple formula for conditional expectations over an analogue of Wiener space, we calculate a generalized analytic conditional Fourier-Feynman transform and convolution product of generalized cylinder functions which play important roles in Feynman integration theories and quantum mechanics. We then investigate their relationships, that is, the conditional Fourier-Feynman transform of the convolution product can be expressed in terms of the product of the conditional FourierFeynman transforms of each function. Finally we establish change of scale formulas for the generalized analytic conditional Fourier-Feynman transform and the conditional convolution product. In this evaluation formulas and change of scale formulas we use multivariate normal distributions so that the orthonormalization process of projection vectors which are essential to establish the conditional expectations, can be removed in the existing conditional Fourier-Feynman transforms, conditional convolution products and change of scale formulas.

AN EVALUATION FORMULA FOR A GENERALIZED CONDITIONAL EXPECTATION WITH TRANSLATION THEOREMS OVER PATHS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제57권2호
    • /
    • pp.451-470
    • /
    • 2020
  • Let C[0, T] denote an analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. For a partition 0 = t0 < t1 < ⋯ < tn < tn+1 = T of [0, T], define Xn : C[0, T] → ℝn+1 by Xn(x) = (x(t0), x(t1), …, x(tn)). In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function Xn which has a drift and does not contain the present position of paths. As applications of the formula with Xn, we evaluate the Radon-Nikodym derivatives of the functions ∫0T[x(t)]mdλ(t)(m∈ℕ) and [∫0Tx(t)dλ(t)]2 on C[0, T], where λ is a complex-valued Borel measure on [0, T]. Finally we derive two translation theorems for the Radon-Nikodym derivatives of the functions on C[0, T].

A TIME-INDEPENDENT CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • 호남수학학술지
    • /
    • 제35권2호
    • /
    • pp.179-200
    • /
    • 2013
  • Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $X_n:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ by $Xn(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t$ is a partition of $[0,t]$. In the present paper, using a simple formula for the conditional expectation given the conditioning function $X_n$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions which have the form $$f((v_1,x),{\cdots},(v_r,x))\;for\;x{\in}C[0,t]$$, where {$v_1,{\cdots},v_r$} is an orthonormal subset of $L_2[0,t]$ and $f{\in}L_p(\mathbb{R}^r)$. We then investigate several relationships between the conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions.

Conditional Integral Transforms on a Function Space

  • Cho, Dong Hyun
    • Kyungpook Mathematical Journal
    • /
    • 제52권4호
    • /
    • pp.413-431
    • /
    • 2012
  • Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.

CHANGE OF SCALE FORMULAS FOR A GENERALIZED CONDITIONAL WIENER INTEGRAL

  • Cho, Dong Hyun;Yoo, Il
    • 대한수학회보
    • /
    • 제53권5호
    • /
    • pp.1531-1548
    • /
    • 2016
  • Let C[0, t] denote the space of real-valued continuous functions on [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}\mathbb{R}^n$ by $Z_n(x)=(\int_{0}^{t_1}h(s)dx(s),{\ldots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $ t_n=t$ is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. Using a simple formula for a conditional expectation on C[0, t] with $Z_n$, we evaluate a generalized analytic conditional Wiener integral of the function $G_r(x)=F(x){\Psi}(\int_{0}^{t}v_1(s)dx(s),{\ldots},\int_{0}^{t}v_r(s)dx(s))$ for F in a Banach algebra and for ${\Psi}=f+{\phi}$ which need not be bounded or continuous, where $f{\in}L_p(\mathbb{R}^r)(1{\leq}p{\leq}{\infty})$, {$v_1,{\ldots},v_r$} is an orthonormal subset of $L_2[0,t]$ and ${\phi}$ is the Fourier transform of a measure of bounded variation over $\mathbb{R}^r$. Finally we establish various change of scale transformations for the generalized analytic conditional Wiener integrals of $G_r$ with the conditioning function $Z_n$.

CONDITIONAL INTEGRAL TRANSFORMS AND CONVOLUTIONS OF BOUNDED FUNCTIONS ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • 충청수학회지
    • /
    • 제26권2호
    • /
    • pp.323-342
    • /
    • 2013
  • Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $Xn:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}:C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\cdots},x(t_n),x(t_{n+1}))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions which have the form $${\int}_{L_2[0,t]}{{\exp}\{i(v,x)\}d{\sigma}(v)}{{\int}_{\mathbb{R}^r}}\;{\exp}\{i{\sum_{j=1}^{r}z_j(v_j,x)\}dp(z_1,{\cdots},z_r)$$ for $x{\in}C[0,t]$, where $\{v_1,{\cdots},v_r\}$ is an orthonormal subset of $L_2[0,t]$ and ${\sigma}$ and ${\rho}$ are the complex Borel measures of bounded variations on $L_2[0,t]$ and $\mathbb{R}^r$, respectively. We then investigate the inverse transforms of the function with their relationships and finally prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions, can be expressed in terms of the products of the conditional Fourier-Feynman transforms of each function.

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS OF UNBOUNDED FUNCTIONS ON A GENERALIZED WIENER SPACE

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제50권5호
    • /
    • pp.1105-1127
    • /
    • 2013
  • Let C[0, $t$] denote the function space of real-valued continuous paths on [0, $t$]. Define $X_n\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\ldots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\ldots},x(t_n),x(t_{n+1}))$, respectively, where $0=t_0 <; t_1 <{\ldots} < t_n < t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions, which have the form $fr((v_1,x),{\ldots},(v_r,x)){\int}_{L_2}_{[0,t]}\exp\{i(v,x)\}d{\sigma}(v)$ for $x{\in}C[0,t]$, where $\{v_1,{\ldots},v_r\}$ is an orthonormal subset of $L_2[0,t]$, $f_r{\in}L_p(\mathbb{R}^r)$, and ${\sigma}$ is the complex Borel measure of bounded variation on $L_2[0,t]$. We then investigate the inverse conditional Fourier-Feynman transforms of the function and prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions can be expressed by the products of the analytic conditional Fourier-Feynman transform of each function.