• Title/Summary/Keyword: anaerobic treatment

Search Result 772, Processing Time 0.023 seconds

A study on inspection methods for waste treatment facilities(I): Derivation of impact factor and mass·energy balance in waste treatment facilities (폐기물처리시설의 세부검사방법 마련연구(I): 공정별 주요인자 도출 및 물질·에너지수지 산정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • Despite the continuous installation and regular inspection of waste treatment facilities, complaints about excessive incineration and illegal dumping stench continue to occur at on-site treatment facilities. In addition, field surveys were conducted on the waste treatment facilities currently in operation (6 type) to understand the waste treatment process for each field, to grasp the main operating factors applied to the inspection. In addition, we calculated the material·energy balance for each main process and confirmed the proper operation of the waste disposal facility. As a result of the site survey, in the case of heat treatment facilities such as incineration, cement kilns, and incineration heat recovery facilities, the main factors are maintenance of the temperature of the incinerator required for incineration and treatment of the generated air pollutants, and in the case of landfill facilities Retaining wall stability, closed landfill leachate and emission control emerged as major factors. In the case of sterilization and crushing facilities, the most important factor is whether or not sterilization is possible (apobacterium inspection).In the case of food distribution waste treatment facilities, retention time and odor control during fermentation (digestion, decomposed) are major factors. Calculation results of material balance and energy resin for each waste treatment facility In the case of incineration facilities, it was confirmed that the amount of flooring materials generated is about 14 % and the amount of scattering materials is about 3 % of the amount of waste input, and that the facility is being operated properly. In addition, among foodwaste facilities, in the case of an anaerobic digestion facility, the amount of biogas generated relative to the amount of inflow is about 17 %, and the biogas conversion efficiency is about 81 %, in the case of composting facility, about 11 % composting of the inflow waste was produced, and it was comfirmend that all were properly operated. As a result, in order to improve the inspection method for waste treatment facilities, it is necessary not only to accumulate quantitative standards for detailed inspection methods, but also to collect operational data for one year at the time of regular inspections of each facility, Grasping the flow and judging whether or not the treatment facility is properly operated. It is then determined that the operation and management efficiency of the treatment facility will increase.

Treatment of Garbage Leachate with Two-phase Anaerobic Digestion Coupled with Ultra Filtration (막결합형 2상 혐기성 소화 공정을 이용한 음식물 탈리액 처리)

  • Lee, Eun-Young;Kim, Hyung-Kuk;Giang, Luu Thi Thuy;Bae, Jae-Ho;Bae, Young-Shin;Won, Jong-Choul;Lee, Jae-Hoon;Park, Seung-Kyun;Cho, Yong-Wan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.997-1006
    • /
    • 2009
  • Organic removal efficiency and methane production rate, a feasibility of power generation from biogas, and the optimum conditions for membrane operation were evaluated for the pilot scale (5 tons/day) two-phase anaerobic digestion coupled with ultra filtration (TPADUF) system fed with garbage leachate. The TPADUF system is consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. When garbage leachate with 150 g/L of TCOD was fed to the TPADUF up to organic loading rate (OLR) of 11.1 g COD/L/d, the effluent TCOD was lower than 6 g/L and the average removal efficiencies of TCOD and SCOD were higher than 95%. The methane composition of the gas was 65%, and the methane yield was 39 $m^3/m^3$ garbage leachatefed, 260 $m^3$/tons $COD_{added}$, or 270 $m^3$/tons $COD_{removed}$, even there was some gas leak. The power production per consumed gas was 0.96 kWh/$m^3$ gas or 1.49 kWh/$m^3$ methane. This lower power production efficiency mainly due to the small capacity of gas engine (15 kW class). The membrane was operated at the average flux of 10 L/$m^2$/hr. When the flux decreased, washing with water and chemical (NaOCl) was conducted to restore the flux. In the TPADUF system, optimum pH could be maintained without alkali addition by recycling the membrane concentrate or mixed liquor of the methanogenic digester to the acidogenic reactor. Also, partial production of methane in the acidogenic reactor had a positive effect on lowering the OLR of the methanogenic reactor.

Isolation of Photosynthetic Bacterium, Rhodopseudomonas palustris JK-1 and Researches on IAA and Carotenoid Production (광합성세균 Rhodopseudomonas palustis 분리 및 IAA와 Carotenoid 생성에 관한 연구)

  • Kim, Yu-Kyoung;Cho, Young-Yun;Kang, Ho-Jun;Kim, Jung-Sun;Yang, Sung-Nyun;Jwa, Chang-sook
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.843-859
    • /
    • 2017
  • The JK-1 isolate which was the best producer of indole-3-acetic acid and carotenoid among the 388 strains isolated from 28 wetlands in Jeju, was identified to be Rhodopseudomonas palustirs belongs to a typical group of non sulfur purple bacteria based on 16S sRNA sequencing. This study investigated the effect of different cultural conditions of pH, temperature, agitation, light and aeration on growth, IAA and carotenoid production of photosynthetic bacterium JK-1 for optimization of IAA and carotenoid production. It was found that growth, IAA, carotenoid, and bacteriochlorophyll production with light (3,000~3,500 Lux) and agitation (100 rpm) showed better results than those with dark/static or dark/agitation (100 rpm) in anaerobic conditions. The optimal pH, temperature and agitation speed for cell growth were 7, $30^{\circ}C$, 150 rpm, for IAA production were 9, $30^{\circ}C$, 150rpm and for carotenoid production were 6, $25^{\circ}C$, 50 rpm, cultured for 72 h under anaerobic light, respectively. The growth and IAA production were high in aerobic culture compared with anaerocic culture, whereas carotenoid and bacteriochlorophyll content were decreased extremely in aerobic condition (0.5~1 vvm). Subsequently, the optimal culture conditions for JK-1 were selected with pH 7, $30^{\circ}C$ and 100 rpm under anaerobic light and the effect on plant growth was tested by pot assay. Inoculation of JK-1 with 3% (v/v) level caused increase in shoot and root dry weigh that varied from 20%~58% to 40%~28% in young radish in camparison to uninoculated treatment at 50 days of growth. The study suggests that the JK-1 isolate may serve as efficient biofertilizer inoculants to promote plant growth.

A Study on the Filtration of Swine Anaerobic Digestate Using Multi-Layered Compost Beds (다층구조의 퇴비단을 이용한 돈분뇨 슬러리 혐기소화액의 여과효과에 대한 연구)

  • Han, Deug-Woo;Lee, Dong-Hyun;Kim, Jung-Gon;Yang, Seung-Hak;Bae, Jin-Woo;Kwag, Jung-Hoon;Choi, Dong-Yoon;Jeong, Kwang-Hwa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.72-81
    • /
    • 2013
  • The objective of this study was to verify whether SCB(Slurry Composting & Bio-filtration) system can be applied for the treatment of anaerobic digestion(AD) wastewater and also, to identify the most effective set among three filtration compost beds tested. Results can be summarized as these; (a) When AD wastewater was sprayed on the top of beds which were mainly composed of sawdust and/or other media and, subsequently, filtrates collected and analyzed, there were large drop in the values of Electric Conductivity(EC), Total Suspended Solid(TSS), Biochemical Oxygen Demand(BOD), and Chemical Oxygen Demand(COD). In contrast, Total Nitrgen(T-N) and Total Phosphorus(T-P) were progressively elevated. We consider these changes as positive if the filtrate are to be utilized as liquid fertilizer. (b) When three sets of filtration beds (T1, T2, T3) were compared for their effectiveness, no significant difference was found among them. These indicate that expensive sawdust can be replaced in part with cheaper media such as woodchip, rice husks, or others. (c) At early stage of operation (within 20 days), BOD in filtrates were maintained at high level probably due to the lack of microbial activity. During the same stage, T-N, T-P was at low level but, were elevated to higher levels thereafter. These data, when combined, indicate that the filtration system needs at least a couple of weeks for the optimized microbial functioning. (d) The temperatures of the experimental beds were progressively dropped as the experiment continued through the fall season, although filtration effectiveness was not noticeably influenced.

Methane Fermentation of Pit in Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 Pit 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.2
    • /
    • pp.191-195
    • /
    • 1999
  • An integrated wastewater treatment pond system is developed for treatment and recycling of excreta from dairy cattle. It is composed of three ponds in series. A pit with a capacity of $10m^3$, 2-day hydraulic residence time, and overflow velocity of $1.5m^3m^{-2}day^{-1}$ is located internally in primary pond. It is designed for efficient sludge sedimentation and effective methane fermentation. It receives $5m^3/day$ of diluted cattle excreta by the water used for clearing stalls. A submerged gays collector for the recovery of methane is installed on the top of the pit. The average BOD_5 concentration of influent is 398.7mg/l. That of the effluent from primary pond is 49.2mg/l. About 88% of BOD_5 are removed in primary pond. It is assumed that about 60% of the influent BOD_5 is removed in the pit and that almost all of the carbon of the removed BOD_5 in the pit is converted to methane and carbon dioxide. Methane fermentation of the pit is well established at $16^{\circ}C$. This phenomena results from temperature stability, complete anaerobic condition, and neutral pH of the pit. Gas from the collector is almost 90% methane, less than 9% nitrogen, and less than 1% carbon dioxide. Thus a purified methane is produced, which can be used as energy source.

  • PDF

ANTIBIOTIC SUSCEPTIBILITY OF BACTERIA ISOLATED FROM MAXILLARY SINUSITIS LESION (상악동염 병소 부위에서 세균의 분리 동정 및 항생제 감수성에 대한 연구)

  • Choi, Young-Og;Kim, Su-Gwan;Kim, Hak-Kyun;Kim, Yong-Jong;Choi, Dong-Kook;Kim, Mi-Kwang;Park, Soon-Nang;Kim, Min-Jung;Kook, Joong-Ki
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.5
    • /
    • pp.436-446
    • /
    • 2006
  • The purpose of this study was to isolate and identify the bacteria in chronic maxillary sinusitis (CMS) lesions from 3 patients and to determine the antimicrobial susceptibility of them against 10 antibiotics. One of them was odontogenic origin and the others were non-odontogenic origin. Pus samples were collected by needle aspiration from the lesions and examined by culture method. Bacterial culture was performed in three culture systems (anaerobic, CO2, and aerobic incubator). Identification of the bacteria was performed by 16S rRNA gene (16S rDNA) nucleotide sequencing method. To test the sensitivity of the bacteria isolated from the maxillary sinusitis lesions against seven antibiotics, penicillin G, amoxicillin, tetracycline, ciprofloxacin, cefuroxime, erythromycin, clindamycin, and vancomycin, minimum inhibitory concentration (MIC) was performed using broth dilution assay. Our data showed that enterobacteria such as Enterobacter aerogenes (30%), Klebsiella pneumoniae (25%), and Serratia marcescens (15%) were predominately isolated from the lesion of non-odontogenic CMS of senile patient (70 year old). Streptococcus spp. (40.3%), Actinomyces spp. (27.4%), P. nigrescens, M. micros, and P. anaerobius strains were isolated in the lesion of odontogenic CMS. In the lesion of non-odontogenic CMS, Streptococcus spp. (68.4%), Rothia spp. (13.2%), and Actinomyces sp. (10.5%) were isolated. The susceptibility pattern of 10 antibiotics was determined according to the host of the bacteria strains ratter than the kinds of bacterial species. Even though the number of CMS was limited as three, these results indicate that antibiotic susceptibility test must be accompanied with treatment of CMS. The combined treatment of two or more antibiotics is better than single antibiotic treatment in the presence of multidrug-resistant bacteria in the CMS lesions.

Analysis on Heat Transfer Coefficient of The Fluidized - Bed Combustion for Management of Sludge (슬러지 처리를 위한 유동층 연소로의 열전달률 해석)

  • Kim, Seong-Jung;Lee, Je-Hak
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.27-33
    • /
    • 2012
  • According to the statistics of the Ministry of Environment, the emission of sewage sludge is increased by 7~9% yearly. In the future, it will be increased continuously because of extension of sewage disposal plants, high class treatment for removing nitrogen and phosphorus. Until now, we have depended on reclamation for lots of quantity and some part has been treated by ocean emission. But, direct reclamation of organic waste will be prohibited and even ocean emission will be prohibited now, so the treatment of sludge is put on emergency alert. Bio-gas can be produced by applying anaerobic digestion method for the recycling or refuse derived fuel can be conducted by applying carbonization method. However, the process is difficult, causes bad smell and makes it the second waste, so it cannot be practical method in fact. This study applied a fluidized bed combustor for sewage sludge treatment technologies that can actually take advantage of key technologies in order to verify its purpose is to demonstrate selected. If applying the fluidized bed combustor, it can be easily utilized as the replaced resource of energy(fuel) in the countries whose energy resources are insufficient, like our country. Especially, if applying only original strengths of the fluidized bed combustor sufficiently, the sewage sludge can be treated simply, eco-friendly, sanitarily and economically. Particularly, it is verified as the energy technology suitable for government's green growth policy.

Study on Characteristics of Solubilization for Sewage Sludge Using Electronic Field and Ultrasonification (전기장과 초음파를 이용한 하수슬러지의 가용화 특성 연구)

  • Seo, Jang-Won;Han, Ji-Sun;Ahn, Chang-Min;Min, Dong-Hee;Yoo, Yeon-Sun;Yoon, Soon-Uk;Lee, Jong-Gyu;Lee, Jong-Yeon;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.636-643
    • /
    • 2011
  • Sludge solubilization using sonification has been increasingly used for sludge volume reduction along with enhancing digestion efficiency during anaerobic biogas production. In this study, either electric field or ultrasonification or in combination with were investigated using three types of sludge (return, excess and mixed at G sewage treatment facility) for the most efficient solubilization. As a the closed loop, 200 L of sludge was continuously passing through the solubilization system at an average flow rate of $0.7m^3/h$, which is equivalent to 3.5 times treated per hour for up to 84 times (24 h). Only implying electric field showed no variation for sCOD/tCOD before and after treatment on sludge solubilization regardless of types of sludge. However, employing the ultrasonic or combined system could both increasingly solubilize sludge with regard to the number of passing-through, which more enhanced by the combined. In addition, VSS/TSS was lowered to in the range of 2 and 6% while its particle size, diameter (0.9) and diameter (0.5) were more minimized than that of raw sludge. For return sludge, ultrasonification was more efficiently facilitated for solubilization, whereas electric field-ultrasonification was more preferably applied for excess and mixed sludge. It is concluded that depending on types of sludge, solubilization system must be selectively applied for the most efficient break-up of them.

A Study on the Optical Internal Recycle Rate and MLSS Concentration of Membrane Coupled $A_2O$ Process for Wastewater Treatment (하수처리를 위한 막결합형 $A_2O$공정에서 최적 내부 순환율 및 MLSS 농도에 관한 연구)

  • Kim Kwan-Yeop;Kim Jin-Mo;Kim Hyung-Soo;Lee Sang-Bek;Park Eugene;Bae Sung-Soo
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.114-120
    • /
    • 2005
  • The purpose of this study is to obtain practical information about membrane coupled $ A_2O$ system for muncipal wastewater treatment. A flat-plate microfiltration (MF) module with a pore size $0.25\;{\mu}m$ was submerged into the aeration basin and treated water was filtrated through the membrane by continuous suction with low pressure. The system was operated with synthetic wastewater to find operational parameters of internal recycle ratio and maximum MLSS showing best water quality and long-term stability. The internal recycle was defined as type 1 for aerobic to anoxic tank and type 2 for anoxic to anaerobic tank, respectively When the flux was maintained at $0.015\;m^3/m^2/hr$ (15 LMH) with 2Q type 1 internal recycle ratio, the optimal operational setting were 10 internal recycle ratio for type 2 and maximum MLSS of 11,000 mg/L among tested conditions. At this condition, removal efficiencies of BOD, CODcr, T-N and T-P showed $97.3\%,\;94.2\%,\;64.0\%,\;63.0\%$, respectively.

The Aeration to Improve Manganese and Chloroform of Effluent at Sludge Thickener of the Conventional Water Treatment Plant (정수장 슬러지 폭기가 방류수 망간 및 클로로포름에 미치는 영향)

  • Choi, Ilgyung;Beak, Inho;Jeong, Chanwoo;Lee, Sungjin;Park, Jungwook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • So many nationwide drinking water treatment plants are under much difficulties by new reinforced discharged effluent standards. Generally, the sludge at thickener should be retended for a long time during usual days. Sometime, the soluble manganese and chloroform may be formed under the anaerobic condition in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. It was necessary to improve the operation conditions and process itself in order to meet water quality standard recently reinforced. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. Sludge aeration prevent particle oxidated Manganese eluting soluble de-oxidated Manganese, excrete formated Chloroform from effluent to air, and improve sludge settling through homogenized sludge particle. We aerated sludge at the conventional water treatment plant, measured Manganese and Chloroform of clarified water at upper sludge, and solid-fluid interface height of sludge in mass cylinder. As a result, contaminant's concentrations of the final effluent was much decreased : 41% of manganese, approximately 62% of chloroform and 35% of sludge volume, compared with non-aeration sludge.